From Wikipedia, the free encyclopedia
Alkulukupariksi eli alkulukukaksosiksi kutsutaan kahta alkulukua, joiden erotus on 2. Kymmenen ensimmäistä alkulukuparia ovat (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103) ja (107, 109).[1]
Alkulukupareja arvellaan olevan äärettömän monta, mutta tätä ei ole todistettu. 14. toukokuuta 2013 Zhang Yitang New Hampshiren yliopistosta julkaisi todistuksen[2], jonka mukaan on olemassa äärettömän monta alkulukua ja , missä [3] Myöhemmin :n arvo on saatu pudotettua lukuun 246.[4]
Kaikki alkulukuparit lukuun ottamatta paria (3, 5) ovat muotoa (6n − 1, 6n + 1), jossa n on luonnollinen luku, jonka täytyy päättyä numeroon 0, 2, 3, 5, 7 tai 8, lukuun ottamatta tapausta n = 1.
Clementin lauseen mukaan[5] (m, m + 2) on alkulukupari, jos ja vain jos
Lisäksi on todistettu seuraava lause:[6]
Sergusovin lauseen mukaan ja ovat alkulukuja jos ja vain jos
Suurin tunnettu alkulukupari on 14. syyskuuta 2016 löydetty . Molemmissa alkulukuparin luvuissa on 388 342 numeroa.[9]
Alkulukupareja arvellaan olevan äärettömän monta, mutta tätä ei ole todistettu. Niiden lukumäärä onkin lukuteorian suurimpia ratkaisemattomia ongelmia. Alkulukupareille on kuitenkin olemassa samankaltainen laskufunktio kuin alkuluvuillekin, , joka ilmaisee lukua n pienempien alkulukuparien määrän.
n | |
---|---|
8 | |
35 | |
205 | |
1 224 | |
8 169 | |
58 980 | |
440 312 | |
3 424 506 | |
27 412 679 | |
224 376 048 | |
1 870 585 220 | |
15 834 664 872 | |
135 780 321 665 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.