From Wikipedia, the free encyclopedia
ریاضیات در دوران طلایی اسلام به دلیل نیاز به محاسبه اوقات شرعی و روشهای تقسیم ارث و املاک آغاز شد. مسلمانان آثار علمی کشورهای دیگر چون یونان، مصر و هند را مطالعه و سپس به عربی ترجمه کردند. با خواندن این کتابها خودشان در علوم مختلف از جمله ریاضی صاحب نظر شدند و پیشرفتهای چشمگیری کردند.
مسلمانان بهطور خلاصه موارد ذیل را به ریاضیات باستانی افزودند:
رسیدن علم ریاضی به اروپا میان سدههای ۱۰ تا ۱۲ میلادی حاصل کار دانشمندان ریاضیدان اسلامی بود.[2]
به شیوه رسمی و مدون با محمد بن موسی خوارزمی یکی از دانشمندان دارالحکمه بغداد آغاز گردید. در آثار خوارزمی سنتهای ریاضی در یونان، مصر و هند با هم ترکیب شدهاست.
خوارزمی جبر یونانی دیوفانتس را که بهصورت هندسی و با اعداد صحیح بود به دانشی واقعی مشتمل بر اعداد صحیح و گنگ و انواع اندازهها را شامل میشد تبدیل کرد[3]
مهمترین اثر خوارزمی، الجبر و المقابله است که از زبان عربی به زبان لاتین ترجمه شده و این کتاب تا سده ۱۶ میلادی در دانشگاههای اروپا به حیث کتاب نصاب بنیادی تدریس میگردید.
پس از خوارزمی، ابویوسف کندی به تکمیل جبر روی آورد. در عصر ترجمه، آثار آپولونیوس، نیکوماخوس و ارشمیدس به عربی ترجمه شد.
ابوالوفا بوزجانی، نخستین شارح کتاب خوارزمی بود، که به تکمیل مبحث معادلات پرداخت. ابنسینا، شرحی بر آثار دیوفانت نوشت. نصیرالدین طوسی، کتابهایی در زمینه ریاضی تألیف نمود. عمر خیام تألیفات ریاضی مشتمل بر تحقیق در اصل موضوع اقلیدس و حساب و جبر دارد. غیاثالدین جمشید کاشانی، کاشف کسر اعشاری و محاسبات عددی بود که اندازه دقیقتری از عدد پی را به دست آورد. معروفترین چهره ریاضی در سده دهم، بهاءالدین عاملی است. در نزد مسلمانان، ریاضیات به علم عدد، هندسه و جبر تقسیم میشدهاست.
ابو الوفاء، ثابت بن قره، فارابی، ابن بنای مراکشی، ابن حمزه مغربی، ابو کامل مصری و ابراهیم ابن سنان و... اکتشافات زیادی در علم ریاضی انجام دادند.
دانستههای این دوران رفته رفته راه خود را به ممالک غرب پیدا کردند و در شکلگیری رنسانس تأثیرات محسوسی گذاشتند. بهطور نمونه، لئوناردو فیبوناچی را مسئول معرفی شیوه عددنویسی هندو-عربی منتج این دوران، و جایگزین کردن سیستم عددنویسی رومی در اروپا با این شیوه دانستهاند.[4]
یا در باب اعداد کسری، محمدبن حصار را مبدع خط کسری دانستهاند، که در اروپا Vinculum نام گرفت.[5]
عمرخیام معادله درجه سوم را از راه هندسی یعنی محل برخورد یک سهمی و یک دایره حل کرد. حالت خاصی از این روش را پیش از این یونانیان بهکار برده بودند ولی روش عمرخیام عام بود.[6] روش عمرخیام همچنین نخستین کار جدی هندسه تحلیلی بهشمار میرود.
شرف الدین طوسی روش نوینی برای یافتن امکان وجود ریشه معادله درجه سوم ارائه کرد که خود حائض اهمیت است.[7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.