شاخهای از مهندسی و ریاضیات که به رفتار سیستمهای دینامیکی با ورودیها و نحوه اصلاح رفتار آنها با بازخورد میپردازد از ویکیپدیا، دانشنامه آزاد
نظریه کنترل شاخهای میانرشتهای از علوم مهندسی و ریاضیات است که به رفتار سیستمهای دینامیکی دارای ورودی میپردازد. ورودی اعمال شده به یک سامانه، فرمان یا مرجع نامیده میشود. هنگامی که قرار است یک یا چند خروجی سامانه، مرجع خاصی را در بازه زمان دنبال کنند، یک کنترلکننده (جبران ساز افزوده شده به سامانه اولیه)، ورودی سامانه را به گونهای دستکاری میکند تا تغییرات مناسب در خروجی سامانه پدید آیند و رفتار سامانه به رفتار مطلوب کاربر نزدیک و نزدیک تر گردد. معمولاً هدف تئوری کنترل یافتن جوابهای مناسبی برای اجرای جبرانسازی بهینه رفتار سامانه توسط کنترلکننده میباشد، به گونهای که موجب پایداری سامانه و آرامش خروجی یا خروجیهای آن حول یک نقطه کار و عدم نوسان خروجیها حول این نقطه گردد. در بیشتر مواقع، یک دسته معادلات دیفرانسیل رابطه بین ورودیها و خروجیهای یک سامانه را تعریف میکنند. اگر این دسته معادلات، معادلاتی دیفرانسیل خطی با ضرایب ثابت باشند، میتوان با محاسبه تبدیل لاپلاس آنها یک تابع تبدیل که توصیفکننده رابطه بین ورودی و خروجیهای سامانه است، را بهدست آورد. اگر دسته معادلات دیفرانسیل غیرخطی باشند ولی جواب معینی داشته باشند میتوان با خطیسازی آنها حول یک نقطه کار و مجدداً محاسبه تبدیل لاپلاس، تابع تبدیل سامانه را بهدست آورد. تابع تبدیل که تابع سیستم یا تابع شبکه نیز نامیده میشود، توصیف ریاضی رابطه بین ورودی و خروجی یک جواب خطی تغییرناپذیر با زمان دسته معادلات دیفرانسیل بیانکننده یک سامانه میباشد. یکی از روشهای بیان و درک یک سامانه کنترلی نمایش آن با استفاده از نمودار بلوکی است که در آن رابطه بین ورودیها و خروجیها و همچنین توابع تبدیل به صورت دیداری بیان میشود.
ابزار و روشهای کنترلی که ابتدا از مهندسی و ریاضیات بهدست آمدند، بهمرور کاربردهای نوینی در عرصههای پیچیدهتر مانند علوم اجتماعی و در زمینههایی ازآن نظیر روانشناسی و جامعهشناسی هم پیدا کردهاند.
منظور از کنترل یک پدیده، دخالت در رفتار آن است، بهطوریکه، نتایج مطلوب حاصل گردد. این عمل بدین صورت انجام میگردد:
مقدار مورد نظر برای یک سیستم یا همان مقدار مطلوب به عنوان مرجع در نظر گرفته میشود. هنگامیکه یک یا چند تا از خروجیهای سیستم باید برای رسیدن به مقدار مطلوب عمل نمایند، کنترلر با دستکاری ورودیها سیستم را ناچار به رسیدن به مقدار مطلوب مینماید.[۲]
اگرچه انواع مختلف سیستمهای کنترلی به دوران باستان برمی گردند، اما تحلیل رسمیتر این زمینه با تجزیه و تحلیل دینامیکی گاورنر گریز از مرکز، که توسط فیزیکدان جیمز کلرک مکسول در سال ۱۸۶۸، با عنوان دربارهٔ گاورنر انجام شد، آغاز شد. قبلاً از یک گاورنر گریز از مرکز برای تنظیم سرعت آسیابهای بادی استفاده شده بود. ماکسول پدیده خود نوسان را توصیف و تحلیل کرد، که در آن تأخیر در سیستم ممکن است منجر به جبران بیش از حد و رفتار ناپایدار شود. این موضوع باعث ایجاد علاقه شدیدی به این موضوع شد، که در طی آن، همکلاسی ماکسول، ادوارد جان روت، نتایج ماکسول را به صورت انتزاعی برای کلاس عمومی سیستمهای خطی خلاصه کرد. بهطور مستقل، آدولف هرویتس با استفاده از معادلات دیفرانسیل در سال ۱۸۷۷ پایداری سیستم را تجزیه و تحلیل کرد و نتیجه آن چیزی بود که اکنون به عنوان قضیه روت-هرویتس شناخته میشود.
یک کاربرد قابل توجه کنترل پویا در منطقه پرواز با سرنشین بود. برادران رایت اولین پروازهای آزمایشی موفقیتآمیز خود را در ۱۷ دسامبر ۱۹۰۳ انجام دادند و از نظر توانایی کنترل پروازهای خود برای دورههای قابل توجهی متمایز بودند (بیشتر از توانایی تولید بالابر از یک ایرفویل که شناخته شده بود). کنترل مداوم و مطمئن هواپیما برای پروازهایی که بیش از چند ثانیه طول بکشد، ضروری بود.
با جنگ جهانی دوم، نظریه کنترل در حال تبدیل شدن به یک حوزه مهم تحقیق بود. Irmgard Flügge-Lotz نظریه سیستمهای کنترل خودکار ناپیوسته را توسعه داد و اصل انفجار را در توسعه تجهیزات کنترل پرواز خودکار برای هواپیماها اعمال کرد. سایر زمینههای کاربرد برای کنترلهای ناپیوسته شامل سیستمهای کنترل آتش، سیستمهای هدایت و الکترونیک بود. گاهی، از روشهای مکانیکی برای بهبود پایداری سیستمها استفاده میشود. به عنوان مثال، تثبیت کنندههای کشتی بالههایی هستند که در زیر خط آب نصب شده و به صورت جانبی ظاهر میشوند. در شناورهای معاصر، آنها ممکن است بالههای فعال کنترل ژیروسکوپی باشند، که توانایی تغییر زاویه حمله خود را دارند تا بتوانند غلبه بر غلتک ناشی از باد یا امواج وارد بر کشتی را تغییر دهند.
مسابقه فضایی نیز به کنترل دقیق فضاپیما بستگی داشت و نظریه کنترل همچنین شاهد استفاده فزاینده ای در زمینههایی مانند اقتصاد و هوش مصنوعی بوده است. در اینجا، ممکن است بگویید که هدف یافتن یک مدل داخلی است که از قضیه تنظیم کننده خوب پیروی کند؛ بنابراین، به عنوان مثال، در اقتصاد، هرچه مدل تجارت (سهام یا کالاها) با دقت بیشتری نشان دهنده عملکرد بازار باشد، با سهولت بیشتری میتواند آن بازار را کنترل کند و «کار مفید» (سود) را از آن استخراج کند. در هوش مصنوعی، یک مثال ممکن است یک چپ بات باشد که حالت گفتمان انسانها را مدلسازی میکند: هرچه با دقت بیشتری بتواند حالت انسانی را مدلسازی کند (مثلاً در یک خط تلفن پشتیبانی صوتی تلفنی)، بهتر میتواند وظایف انسان را با مهارت انجام دهد (به عنوان مثال در انجام اقدامات اصلاحی برای حل مشکلی که باعث تماس تلفنی با خط راهنما شده است). این دو نمونه آخر، تفسیر تاریخی محدود تئوری کنترل را به عنوان مجموعه ای از معادلات دیفرانسیل مدلسازی و تنظیم حرکت جنبشی در نظر گرفته و آن را به یک تعمیم گسترده تنظیم کننده متقابل با گیاه گسترش میدهد.
رشته نظریه کنترل را میتوان به دو شاخه تقسیم کرد:
سیستمهای کنترل را میتوان به تعداد ورودی و خروجی به دستههای مختلف تقسیم کرد.
سیستم کنترل پسخوردی (feedback control system) سیستمی است که از راه مقایسه خروجی و ورودی مبنا و با استفاده از اختلاف آنها به عنوان وسیله کنترل، رابطه از پیش تعیین شده میان خروجی و ورودی را حفظ میکند.
سیستمهای کنترل پسخوردی به حوزه مهندسی (الکترونیک) محدود نمیشوند و چنین سیستمهایی را میتوان در حوزههای دیگر نظیر اقتصاد و زیستشناسی نیز یافت.
علت استفاده از پسخورد در سامانههای کنترل، کاهش خطای میان ورودی مبنا و خروجی است. کاهش خطای سیستم، تنها یکی از آثار بسیار مهمی است که پسخورد بر یک سامانه دارد. پسخورد بر سایر مشخصات عملکرد سیستم مانند پایداری، پهنای باند، بهرهٔ کل، امپدانس و حساسیت نیز اثر دارد.
Seamless Wikipedia browsing. On steroids.