From Wikipedia, the free encyclopedia
در نظریه گراف، راس مجاور راس v در گراف G راسی است که با یالی به v وصل شده باشد. مجاورهای راس v در گراف G ناشی از زیرگرافی هستند که همهٔ رئوس G را دارد و بین هر دو راس آن یالی وجود دارد. به عنوان مثال، در تصویر روبرو، گرافی با ۶ راس و ۷ یال نمایش دادهشدهاست. راس ۵ با سه راس ۱، ۲ و ۴ مجاور است ولی با رئوس ۳ و ۶ مجاور نیست.
معمولاً مجاورت رئوس را با ( NG(v یا (N(v نمایش میدهند.
مجاورها معمولاً در الگوریتمهای کامپپوتر استفاده میشود و توسط ماتریس مجاورت و لیست مجاورت نمایش دادهمیشود. همچنین، توسط مجاورها میتوان ضریب خوشهبندی گراف را که برابر است با میزان میانگین چگالی مجاور، به دست آورد.
راس منفرد هیچ مجاوری ندارد. درجه هر راس برابر با تعداد مجاورهایش است. حالت خاص دور است که راس با خود در ارتباط است، اگر چنین یالی وجود داشته باشد راس با خود مجاور است.
اگر همهٔ رئوس گراف G مجاور داشته باشند، یکریخت این گراف، گرافی مشابه گراف H خواهد بود و G را بهطور محلی H نامیدهمیشود، و اگر همه رئوس در گراف G مجاور داشتهباشند که متعلق به برخی از گرافهای خانواده F باشد، G را بهطور محلی F مینامند. بهطور مثال در تصویر، گراف هشت وجهی نمایش دادهشدهاست، هر راس مجاوری دارد و یکریخت این گراف، گراف دوری چهار راسی است. پس گراف هشت وجهی بهطور محلی گراف دوری C4 نامیدهمیشود.
مثال:
برای مجموعه A که شامل رئوس است، مجاورهای A، اجماع مجاور رئوس هستند. پس مجموعه همه رئوس مجاور برابر است با حداقل اعضا A.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.