گردآوری مرتبی از اشیا From Wikipedia, the free encyclopedia
در ریاضیات، یک دنباله (به انگلیسی: Sequence) یک گردآوری شمارا از اشیاء است که در آن تکرار مجاز و ترتیب مهم است.[1]
مشابه یک مجموعه، دنباله شامل چند عضو (یا جمله) است. تعداد اعضای یک دنباله (شاید نامتناهی) «طول دنباله» نامیده میشود. برخلاف یک مجموعه، در یک دنباله، عناصر مشابه میتوانند چندین بار در محلهای مختلف یک دنباله پدیدار شوند و ترتیب آنها اهمیت دارد.
به عنوان مثال، یک دنباله است که به ترتیب از ۵ و ۳ و ۳ و ۸ تشکیل شده و با یا یکسان نیست.
به مکانی که یک عضو در یک دنباله قرار دارد «اندیس» ِ آن عضو میگویند،[1] به عنوان مثال ۸، چهارمین عضو دنبالهٔ فوق است پس اندیس آن، ۴ است. اندیس اولین عضو دنباله را معمولاً ۱ تعریف میکنند. n-اُمین عضو یک دنباله مانند را به صورت نمایش میدهند.
به دنبالهای بهطول ، یک n-تایی مرتب (به انگلیسی: tuple) نیز گفته میشود.[2]
در نظریهٔ تحلیلی اعداد، به دنبالهای که اعضای آن حقیقی یا مختلط باشند تابع حسابی یا دنبالهٔ حقیقی میگویند. در علوم رایانه، رشته دنبالهای از نویسهها است.
در بیشتر منابع، اندیسهای دنباله باید شامل تمام اعداد طبیعی باشند (دنباله نامتناهی باشد)[3] یا این که میتوانند اعداد طبیعی کوچکتر از باشد (دنباله متناهی باشد)؛ امّا در بعضی موارد (بر اساس نیاز) این تعریف تعمیم داده میشود. به این صورت که اندیسها میتوانند هر بازهای از اعداد صحیح باشد.[1]
در نظریهٔ مجموعهها، دنباله به صورت تابعی تعریف میشود که دامنهٔ آن اعداد طبیعی باشد:[3]
برای نمایش دنبالهها از استفاده میشود. برای دنبالههای متناهی از پرانتز نیز استفاده میشود. مثال:
معمولاً برای جلوگیری از کژتابی، جملهٔ عمومی نیز نوشته میشود:
در بسیاری از منابع، به جای از استفاده میشود[4] امّا در این مقاله برای اشتباه نشدن با مجموعهها، از این نمادها استفاده نشده. در بعضی منابع نیز از استفاده از نمادها پرهیز شدهاست.[3]
به ضابطهٔ یک دنباله مانند ، «جملهٔ عمومی» آن میگویند. مثال:
گاهی (با این که این نمایش معمولاً برای دنبالههای نامتناهی استفاده میشود)، حدود اندیسها را نیز مشخص میکنند:[1][4]
در این روش، مقدار هر جمله از دنباله وابسته به جملات قبلی آن است.[1] مثل دنبالهٔ فیبوناچی:
بعضی مواقع میتوان دنبالهٔ بازگشتی را ساده کرد و نمایش جملهٔ عمومی آن را پیدا کرد. به عنوان مثال دنبالهٔ
را میتوان به صورت ساده کرد.
تابع آکرمن مثالی ست از مواقعی که نمیتوان دنباله را ساده کرد:
دنبالهها نیز مانند بقیهٔ توابع میتوانند به صورت نموداری نمایش داده شوند. مثال:
از آن جایی که دنباله نوعی تابع است، تعریف یکنوایی توابع در این مورد نیز همان است.
این قضیه بیان میدارد که یک دنباله صعودی ست اگر و تنها اگر هر جملهٔ آن از جملهٔ قبلی بزرگتر باشد:[3]
و نزولی نیز به صورت مشابه:
شرط اکیداً صعودی و اکیداً نزولی نیز به شکل مشابه.
یک دنباله «از بالا کراندار» است اگر کران بالا داشته باشد؛ بهطور دقیقتر
همچنین یک دنباله «از پایین کراندار» است اگر
در نهایت، یک دنباله «کراندار» است اگر از بالا و پایین کراندار باشد. به عبارتی دیگر:[3]
در این نوع از دنبالهها، اختلاف هر جمله با جملهٔ پیشین مقداری ثابت است.
در این نوع از دنبالهها، نسبت هر جمله به جملهٔ پیشین مقداری ثابت است.
دنبالهٔ چندجملهای دنبالهای ست که هر جملهٔ آن ضریب تابعی چندجملهای باشد. مثال:
دنبالهٔ دنبالهٔ چندجملهای است.
برای یک دنباله مانند ، دنبالهٔ مجموع جزئی متناظر با آن به صورت زیر تعریف میشود:[6]
عنصر nـُم سری فوق را «جمع جزئی» ِ n عضو اول دنباله میگویند.
حد مجموع جزئی در بینهایت همان سری دنباله است
مفهوم جمع جزئی شباهت بسیاری با انتگرال دارد. در واقع، انتگرالِ یک تابع به کمک حد این جمع تعریف میشود.
از آنجا که دنباله یک تابع گسسته میباشد، باید حد آن در بینهایت را اختصاصاً تعریف کرد.
اگر چنین مقداری وجود داشته باشد، دنباله را «همگرا» میگوییم و به اصطلاح، دنباله به آن مقدار میل میکند.
به عنوان مثال دنبالهٔ به صفر میل میکند:
در غیر این صورت دنباله را «واگرا» میگوییم. یک دنبالهٔ واگرا میتواند به ∞ یا -∞ میل کند یا به هیچ مقداری میل نکند.
به عنوان مثال دنبالهٔ به هیچ مقداری میل نمیکند:
و دنبالهٔ به ∞ میل میکند:
گاهی حد دنبالهای مانند را به صورت (با حروف بزرگ) نمایش میدهند:
با وجود این که کلمات «سری» و «دنباله» عموماً مترادف یکدیگر هستند، در ریاضیات مفاهیم متفاوتی دارند.
سری متناظر با یک دنباله به صورت نمایش داده میشود و یافتن مقدار سری از اهمیت بالایی برخوردار است.
جمع اعضای یک دنبالهٔ واگرا تعریف نشدهاست. به عبارت دقیقتر، سری واگرا ست.
از معروفترین مثالهای این حالت میتوان به سری گرندی:
و این سری اشاره کرد:
جمع اعضای یک دنبالهٔ همگرا نیز ممکن است تعریف نشده باشد.
سری همساز از مثالهای معروف این حالت است:
همچنین جمع اعضای یک دنبالهٔ همگرا میتواند همگرا باشد.
این سری از مثالهای معروف این حالت است:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.