Top Qs
Línea de tiempo
Chat
Contexto

Teorema de la deducción

Metateorema en la lógica matemática De Wikipedia, la enciclopedia libre

Remove ads
Remove ads

El teorema de la deducción es un metateorema de la lógica proposicional, la lógica de primer orden y otros sistemas lógicos, que es bastante utilizado para demostrar otros metateoremas.[1] Se trata de una formalización de la técnica de demostración ordinaria según la cual para demostrar que de A se sigue B, basta con suponer A y a partir de ello llegar a la conclusión de que B.

Más formalmente, el teorema establece que si una fórmula B es deducible (en un sistema deductivo S) a partir del conjunto de fórmulas , entonces A → B es deducible a partir de solamente.[1] En símbolos:

  implica  

O alternativamente, en la notación del cálculo de secuentes:

  implica  

En el caso especial donde es el conjunto vacío, el teorema de la deducción dice que:[1]

  implica  

El teorema de la deducción parece haber sido demostrado por primera vez por Alfred Tarski en 1921, pero la primera demostración publicada es de Jacques Herbrand en 1930.[1]

Remove ads

Converso del teorema de la deducción

Resumir
Contexto

A partir del teorema de la deducción, es fácil demostrar que si A → B es deducible (en un sistema deductivo S) a partir de , entonces B es deducible a partir de .[1] Simbólicamente:

  implica  

Esto, junto con el teorema de la deducción, permite establecer el metateorema:[1]

  si y sólo si  

Y cuando es el conjunto vacío:

  si y sólo si  
Remove ads

El teorema en los sistemas de deducción natural

Resumir
Contexto

El teorema de la deducción se utiliza en los sistemas de deducción natural como regla de introducción del condicional material. La regla dice que si suponiendo A se llega a la conclusión de que B, entonces se puede afirmar que A → B, introduciendo así un condicional material. Por ejemplo, una demostración que hace uso de la regla de introducción del condicional material podría ser:

Más información Demostrar: ...
Remove ads

Véase también

Notas y referencias

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads