Top Qs
Línea de tiempo
Chat
Contexto
Pentación
operación aritmética De Wikipedia, la enciclopedia libre
Remove ads
Remove ads
En matemáticas, la pentación es la hiperoperación que le sigue a la tetración y es anterior a la hexación. Se define como la iteración (repetición) de tetraciones, tal y como la tetración es la iteración de la potenciación.[1] Es una operación binaria definida con dos números a y b, donde a es «tetrado» a sí mismo b veces. por ejemplo, usando la notación de hiperoperación para la pentación y tetración, quiere decir «tetrar» 2 a sí mismo 3 veces, o . Esto se puede después reducir a

Remove ads
Etimología
La palabra «pentación» fue acuñada por Reuben Goodstein en 1947 de las raíces penta- (cinco) e iteración. Es parte de su esquema general para nombrar a las hiperoperaciones.[2]
Notación
Resumir
Contexto
No existe un consenso general para la notación de la pentación; por lo tanto existen varias maneras de escribir la operación. Sin embargo, unas se usan más que otras y existen distintas ventajas entre una y otra forma de uso.
- La pentación se puede escribir como una hiperoperación como . En este formato, puede ser interpretado como el resultado de aplicar repetidamente la función , por repeticiones, comenzando con el número 1. De forma análoga, , la tetración, representa el valor obtenido al aplicar repetidamente la función , por repeticiones, comenzando con el número 1, y la pentación representa el valor obtenido al aplicar repetidamente la función , por repeticiones, comenzando con el número 1.[3] Esta será la notación usada en el resto del artículo
- En la notación flecha de Knuth, se representa como o . En esta notación, representa a la función de potenciación y representa a la tetración. La operación puede adaptar fácilmente la hexación añadiendo otra flecha.
- En la notación de cadena de Conway, .[4]
- Otra notación propuesta es , aunque esta no es extensible a hiperoperaciones de mayor orden.[5]
Remove ads
Ejemplos
Resumir
Contexto
Los valores de la función de pentación también pueden ser obtenidos de los valores en la cuarta fila de valores en una variante de la función de Ackermann: si se define como la recurrencia de Ackermann con las condiciones iniciales y , entonces .[6]
Como la tetración, su operación base, no ha sido extendida a alturas no-enteras, la pentación actualmente sólo está defnida para valores enteros de a y b donde y , y unos pocos valores enteros adicionales que podrían estar únicamente definidos. Como todas las hiperoperaciones de orden 3 y mayor, la pentación tiene los siguientes casos triviales (identidades) que son verdaderos para todos los valores de a y b en su dominio:
Adicionalmente, se puede definir:
Además de los casos triviales arriba expuestos, la pentación genera números extremadamente grandes muy rápidamente tal que sólo hay unos pocos casos no-triviales que producen números que pueden ser escritos en notación convencional, como se muestra a continuación:
- (se muestra aquí en notación de exponentes iterados ya que es demasiado grande para ser escrito en notación convencional. Nótese que )
- (un número con más de dígitos)
- (un número con más de dígitos)
Remove ads
Véase también
- Función de Ackermann
- Operadores de Bowers
- Número de Graham
Referencias
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads