Top Qs
Línea de tiempo
Chat
Contexto

Línea espectral

De Wikipedia, la enciclopedia libre

Línea espectral
Remove ads

Una línea espectral es una línea oscura o brillante en un espectro uniforme y continuo, resultado de un exceso o una carencia de fotones en un estrecho rango de frecuencias, comparado con las frecuencias cercanas. Cuando existe un exceso de fotones se habla de una línea de emisión. En el caso de existir una carencia de fotones, se habla de una línea de absorción. El estudio de las líneas espectrales permite realizar un análisis químico de cuerpos lejanos, siendo la espectroscopia uno de los métodos fundamentales usados en la astrofísica, aunque es utilizada también en el estudio de la Tierra.

Thumb
Las líneas espectrales se detectan como líneas de absorción (A) o líneas de emisión (B) dependiendo de las posiciones del detector, el gas y la fuente luminosa.
Remove ads

Historia

Resumir
Contexto
Thumb
Líneas de Fraunhofer con su notación alfabética y las longitudes de onda correspondientes.

La línea espectral fue un fenómeno que permaneció insospechado hasta los primeros estudios realizados con prismas sobre la descomposición de la luz. La primera observación de una línea espectral fue la línea de emisión del sodio, realizada por Thomas Melvill en 1752. Con la ayuda de un prisma, observó la luz de unas sales calentadas por una llama y descubrió una línea intensa, amarilla.[1]

El descubrimiento de las líneas de absorción se remonta al siglo XIX, en 1802, cuando William Hyde Wollaston en su investigación sobre los prismas, observó unas líneas negras en el espectro habitualmente continuo de la luz descompuesta. Estas líneas tenían la particularidad de no cambiar de posición independientemente de cual fuese el prisma y de su material. Joseph von Fraunhofer utilizó esta observación para desarrollar una forma de medir las longitudes de onda tomando esas líneas como referencia. Gustav Robert Kirchhoff desarrolló así un sistema de referencias, utilizando las líneas más visibles del espectro solar y numerándolas. Esas líneas de referencia se utilizaban luego para calibrar los instrumentos de medición y espectroscopia.[2]

Mientras que Fraunhofer estableció la medida de la longitud de onda de algunas de las líneas espectrales, fue Anders Jonas Ångström quien determinó las longitudes de onda de casi mil líneas de absorción utilizando rejillas de difracción en 1869, reemplazando el sistema de líneas de Fraunhofer y la numeración de Kirchhoff hasta 1890.[2]

Remove ads

Tipos de líneas espectrales

Resumir
Contexto
Thumb
Espectro continuo.
Thumb
Líneas de emisión.
Thumb
Líneas de absorción.

Las líneas espectrales son el resultado de la interacción entre un sistema cuántico —por lo general, átomos, pero algunas veces moléculas o núcleos atómicos— y fotones. Cuando un fotón tiene una energía muy cercana a la necesaria para cambiar el estado de energía del sistema (en el caso del átomo el cambio de estado de energía sería un electrón cambiando de orbital), el fotón es absorbido. Tiempo después, será reemitido, ya sea en la misma frecuencia —o longitud de onda[3] que originalmente tenía, o en forma de cascada, es decir, una serie de fotones de diferente frecuencia. La dirección en la que el nuevo fotón será reemitido estará relacionada con la dirección de donde provino el fotón original.

Dependiendo del tipo de gas, la fuente luminosa y lo que arribe al detector, se pueden producir dos tipos de líneas: de emisión o de absorción. Si el gas se encuentra entre el detector y la fuente de luz —la cual, por lo general, se tratará de una fuente con espectro continuo—, de tal forma que el detector pueda observar el espectro tanto del gas como de la fuente, se observará una disminución de la intensidad de la luz en la frecuencia del fotón incidente, debido a que la mayor parte de los fotones reemitidos saldrán en direcciones diferentes a las que poseían los fotones originales. En este caso se observará una línea de absorción. Por otro lado, si el detector es capaz de observar el gas, pero no puede ver la fuente de luz, se observarán solamente los fotones reemitidos, resultando en líneas de emisión.

La posición de las líneas espectrales depende del átomo o molécula que las produzca. Debido a lo anterior, estas líneas son de gran utilidad para identificar la composición química de cualquier medio que permita pasar la luz a través de él. Varios elementos químicos se han descubierto gracias a la espectroscopia. Entre algunos de estos están el helio, el talio y el cerio. Las líneas espectrales también dependen de las condiciones físicas del gas. Por esta razón, son comúnmente utilizadas para determinar las características físicas, además de la composición química, de estrellas y otros cuerpos celestes, para los cuales no existe ningún otro método de análisis.

Existen otros mecanismos de producción de líneas espectrales, además de las interacciones fotón-átomo. Dependiendo del tipo de interacción física (entre moléculas, átomos, etc.), la frecuencia de los fotones resultantes puede ser muy diversa. Debido a esto, se pueden observar líneas en cualquier región del espectro electromagnético, desde las ondas de radio hasta los rayos gamma.

Remove ads

Nomenclatura

Resumir
Contexto

Muchas líneas espectrales, las llamadas «líneas de Fraunhofer», poseen una nomenclatura especial.[4] Por ejemplo la línea producida por el átomo de calcio una vez ionizado, a una longitud de onda de 430,774 nm, se conoce como la «línea K». A las líneas de átomos que no tienen una designación de Fraunhofer especial se les suele denotar por el símbolo del elemento químico en cuestión, seguido de un número romano. Para los átomos neutros se utiliza el número I. Si el átomo está ionizado una vez, se usa el número II, III para átomos ionizados dos veces y así sucesivamente. En muchos casos, debido a que un mismo átomo produce una serie de líneas, se suele añadir también la longitud de onda, por lo general en angstroms —en el caso del espectro en luz visible— u otras unidades (nanómetros, micras, etc.). Por ejemplo, para el caso de la línea del estroncio ionizado una vez, a 407,7 nm, se utiliza la nomenclatura «SrII λ4077».[5]

Existen algunas líneas que solamente se pueden producir en gases cuya densidad es mucho menor a la que se podría tener en condiciones normales en la Tierra. Esta clase de líneas se conocen como líneas prohibidas. Para estas líneas se suele escribir el símbolo químico y el número romano entre corchetes. Por ejemplo, [OIII] λ5007 es la línea prohibida del oxígeno ionizado dos veces, en 5007 Å.

Un caso especial son las líneas producidas por el átomo de hidrógeno neutro. En este caso se utilizan letras griegas para designarlas, antecedidas por otros símbolos, dependiendo de nivel energético hacia el cual el electrón desciende. Para cambios hacia primer nivel (serie de Lyman) desde el segundo se utiliza la nomenclatura «Lyα», del nivel 3 al 1 se utiliza la nomenclatura «Lyß», y así, sucesivamente. Para cambios hacia nivel 2 (serie de Balmer) desde el 3 se utiliza la nomenclatura «»; del 4 al 2, «Hβ»; del 5 al 2, «Hγ»; etc. En el caso de cambios hacia el nivel 3 desde niveles superiores (serie de Paschen) se utilizan «Paα», «Paβ», «Paγ», etc. Hacia el nivel 4 desde niveles más altos (serie de Brackett), la designación es «Brα», «Brβ», «Brγ», etc. Para transiciones hacia niveles más altos, se utiliza el número del nivel más bajo. Por ejemplo, para un electrón que va del nivel 23 al nivel 22, se utilizaría «22α», del nivel 24 al 22, «22β», etc.

Remove ads

Desplazamiento y ensanchamiento de las líneas espectrales

Loading content...

Véase también

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads