Top Qs
Línea de tiempo
Chat
Contexto
Grupo simétrico
grupo de las aplicaciones biyectivas de un conjunto en sí mismo bajo la composición De Wikipedia, la enciclopedia libre
Remove ads
Remove ads
En matemáticas, el grupo simétrico sobre un conjunto , denotado por o , es el grupo formado por las aplicaciones biyectivas de en sí mismo, bajo la operación de composición de funciones.[1]

Cuando es un conjunto finito, el grupo se denomina grupo de permutaciones de elementos, y se denota por o . El orden de este grupo es n!, y no es abeliano para .
El teorema de Cayley afirma que todo grupo es isomorfo a un subgrupo de su grupo simétrico . En el caso particular de que sea finito de orden , entonces es isomorfo a un subgrupo de .[2]
Remove ads
Composición de permutaciones
Resumir
Contexto
Hay diversas formas de representar una permutación. Podemos escribir una permutación σ en forma de matriz, situando en primera fila los elementos del dominio 1, 2, 3..., y en la segunda las imágenes correspondientes σ(1), σ(2), σ(3),....
Dada dos permutaciones, su composición se realiza siguiendo las reglas usuales de composición de funciones:
Si | y |
su composición es:
El cálculo de la composición puede seguirse de un modo visual, recordando que al componer funciones se opera de derecha a izquierda:
Remove ads
Presentación del grupo de permutaciones de n elementos
Resumir
Contexto
Generadores
Recordemos que una trasposición es una permutación que intercambia dos elementos y fija los restantes. Toda permutación se descompone como producto de trasposiciones. De este modo, el conjunto de las trasposiciones forma un sistema generador de . Pero es posible reducir aún más este sistema restringiéndonos a las trasposiciones de la forma . En efecto, para i<j podemos descomponer cualquier trasposición en la forma:
Relaciones elementales
Estos generadores permiten definir una presentación del grupo simétrico, junto con las relaciones:
- ,
- ,
- .
Otros generadores
Es posible igualmente usar como sistema de generadores:
- Las trasposiciones de la forma (1 i), con i>1.
- El conjunto formado por solo dos generadores:la trasposición σ=(1 2) y el ciclo c=(1 2 ... n).
Remove ads
Clases de conjugación
Resumir
Contexto
Recordemos que toda permutación puede ser descrita como producto de ciclos disjuntos, y esta descomposición es única salvo el orden de los factores. Las clases de conjugación de Sn se corresponden con la estructura de dicha descomposición en ciclos: dos permutaciones son conjugadas en Sn si y sólo si se obtienen como composición del mismo número de ciclos disjuntos de las mismas longitudes. Por ejemplo, en S5, (1 2 3)(4 5) y (1 4 3)(2 5) son conjugados; pero (1 2 3)(4 5) y (1 2)(4 5) no.
El grupo S3, formado por las 6 permutaciones de tres elementos tiene tres clases de conjugación, listadas con sus números de elementos:
- La identidad (abc → abc) (1)
- Las permutaciones que intercambian dos elementos (abc → acb, abc → bac, abc → cba) (3)
- Las permutaciones cíclicas de los 3 elementos (abc → bca, abc → cab) (2)
El grupo S4, consistente en las 24 permutaciones de 4 elementos tiene 5 clases de conjugación:
- La identidad (1)
- Las permutaciones que intercambian dos elementos (6)
- Las permutaciones que intercambian cíclicamente tres elementos (8)
- Las permutaciones cíclicas de los cuatro elementos (6)
- Las permutaciones que intercambian dos elementos entre sí, y también los dos restantes (3)
En general, cada clase de conjugación en Sn se corresponderá con una partición entera de n y podrá ser representada gráficamente por un diagrama de Young. Así, por ejemplo, las cinco particiones de 4 se corresponderían con las cinco clases de conjugación listadas anteriormente:
- 1 + 1 + 1 + 1
- 2 + 1 + 1
- 3 + 1
- 4
- 2 + 2
Representaciones del grupo
Si asociamos a cada permutación su matriz permutación obtenemos una representación que en general no es irreducible.[3]
Representaciones irreducibles
Referencias
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads