Remove ads
rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos De Wikipedia, la enciclopedia libre
La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.[1] Se conoce a esta rama también como física de altas energías, debido a que a muchas de estas partículas solo se les puede ver en grandes colisiones provocadas en los aceleradores de partículas.[2]
En la actualidad, las partículas elementales se clasifican siguiendo el llamado modelo estándar en dos grandes grupos: bosones y fermiones. Los bosones tienen espín entero (0, 1 o 2) y son las partículas que interactúan con la materia, mientras que los fermiones tienen espín semientero (1/2 o 3/2) y son las partículas constituyentes de la materia. En el modelo estándar se explica cómo las interacciones fundamentales en forma de partículas (bosones) interactúan con las partículas de materia (fermiones). Así, el electromagnetismo tiene su partícula llamada fotón, la interacción nuclear fuerte tiene al gluón, la interacción nuclear débil a los bosones W y Z y la gravedad a una partícula hipotética llamada gravitón. Entre los fermiones hay más variedad; se encuentran dos tipos: los leptones y los quarks. En conjunto, el modelo estándar contiene 24 partículas fundamentales que constituyen la materia (12 pares de partículas y sus correspondientes anti-partículas) junto con tres familias de bosones de gauge responsables de transportar las interacciones.[3]
Los principales centros de estudio sobre partículas son el Laboratorio Nacional Fermi o Fermilab, en Estados Unidos y el Centro Europeo para la Investigación Nuclear o CERN, en la frontera entre Suiza y Francia. En estos laboratorios lo que se logra es obtener energías similares a las que se cree que existieron en el Big Bang y así se intenta tener cada vez más pruebas del origen del universo.[4]
El ser humano, desde la antigüedad, ha imaginado que el Universo en el que habita está compuesto de varios elementos; por ejemplo, Empédocles en el s. V a. C. postuló que todo lo existente se podría obtener de la mezcla de agua, tierra, fuego y aire.[5] Podríamos mencionar a Demócrito como el primero en indicar la existencia de átomos, como una especie de elementos indivisibles.
Los avances científicos de principios del siglo XX por parte de Max Planck, Albert Einstein, Niels Bohr y otros dieron lugar al nacimiento de la mecánica cuántica. El efecto fotoeléctrico mostraba la naturaleza cuántica de la luz para explicar su interacción con la materia, denominándose fotón al «cuanto» de luz. Actualmente se conocen otras tres partículas que interactúan con la materia, llamadas bosones. Para explicar la estructura de la materia aparecieron diferentes modelos atómicos, siendo, hacia 1930, los electrones, protones y neutrones los constituyentes básicos de la materia. Hacia 1960, gracias a Murray Gell-Mann, se predicen constituyentes más elementales para los protones y neutrones, los quarks, por lo que los elementos básicos constituyentes de la materia se convierten en quarks, electrones y neutrinos.
Los físicos de partículas se han esforzado desde un principio por clasificar las partículas conocidas y por describir toda la materia y sus interacciones. A lo largo de la historia de la física han existido muchas partículas que en su momento se han definido como indivisibles, tales como los protones y neutrones, que más adelante se ha demostrado que si lo son. Después de diferentes teorías atómicas y nucleares, en la actualidad se usa el llamado modelo estándar para describir la materia que constituye el universo y sus interacciones.
De acuerdo con el modelo estándar, existen seis tipos de quarks, seis tipos de leptones y cuatro tipos de bosones. Estas partículas están divididas en dos grandes categorías por el principio de exclusión de Pauli: las que no están sujetas a este principio son los bosones y a las que si lo están se las llama fermiones.[6]
Los bosones son partículas que no cumplen el principio de exclusión de Pauli, por lo que dos partículas pueden ocupar el mismo estado cuántico. A temperaturas muy bajas tienden a ocupar el nivel energético más bajo, ocupando todas las partículas el mismo estado cuántico.[7] En 1924, Satyendra Nath Bose y Albert Einstein postularon un modelo de estadística, conocida ahora como estadística de Bose-Einstein, para moléculas a temperaturas muy cercanas al cero absoluto; esta misma estadística resulta que puede aplicarse también a este tipo de partículas.[8]
Los bosones descubiertos hasta la fecha:[9]
Partícula | Símbolo | Masa (en GeV/c2) | Carga eléctrica | Espín | Interacción |
---|---|---|---|---|---|
Fotón | 0 | 0 | 1 | electromagnética | |
Bosón W | W± | 80,4 | ± 1 | 1 | débil |
Bosón Z | Z0 | 91,187 | 0 | 1 | débil |
Gluón | g | 0 | 0 | 1 | fuerte |
Higgs | H0 | 124,97 | 0 | 0 | masa en partículas |
Las teorías matemáticas que estudian los fenómenos de estas partículas son, en el caso de la cromodinámica cuántica la interacción fuerte de los gluones y en el caso de la electrodinámica cuántica es la interacción electrodébil de fotones y bosones W y Z.
Los fermiones son partículas con espín, o momento angular intrínseco, fraccionario y que sí están sujetos al principio de exclusión de Pauli. O sea que dos partículas no pueden estar en un mismo estado cuántico en el mismo momento. Su distribución está regida por la estadística de Fermi-Dirac; de ahí su nombre.[10]
Los fermiones son básicamente partículas de materia, pero a diferencia de los bosones, no todos los fermiones son partículas elementales. El caso más claro es el de los protones y neutrones; estas partículas son fermiones, pero están compuestos de quarks, que, en nuestro nivel actual de conocimientos, sí se consideran como elementales.
Los fermiones se dividen en dos grupos: los quarks y los leptones. Esta diferencia se aplica debido a que los leptones pueden existir aislados, a diferencia de los quarks que se encuentran siempre en presencia de otros quarks.[11] Los grupos de quarks no pueden tener carga de color debido a que los gluones que los unen poseen carga de color. Las propiedades básicas de estas partículas se las encuentra aquí:[9]
Tipo de fermión | Nombre | Símbolo | Carga electromagnética |
Carga débil* | Carga de color |
Masa |
---|---|---|---|---|---|---|
Leptón | ||||||
Electrón | e- | -1 | -1/2 | 0 | 0,511 MeV/c² | |
Muon | - | -1 | -1/2 | 0 | 105,6 MeV/c² | |
Tauón | - | -1 | -1/2 | 0 | 1,784 GeV/c² | |
Neutrino electrónico | e | 0 | +1/2 | 0 | < 50 eV/c² | |
Neutrino muónico | 0 | +1/2 | 0 | < 0,5 MeV/c² | ||
Neutrino tauónico | 0 | +1/2 | 0 | < 70 MeV/c² | ||
Quark | ||||||
up | u | +2/3 | +1/2 | R/G/B | ~5 MeV/c² | |
charm | c | +2/3 | +1/2 | R/G/B | ~1.5 GeV/c² | |
top | t | +2/3 | +1/2 | R/G/B | >30 GeV/c² | |
down | d | -1/3 | -1/2 | R/G/B | ~10 MeV/c² | |
strange | s | -1/3 | -1/2 | R/G/B | ~100 MeV/c² | |
bottom | b | -1/3 | -1/2 | R/G/B | ~4,7 GeV/c² |
Las partículas se agrupan en generaciones. Existen tres generaciones:
Los físicos de partículas denominan como hadrones a las partículas que se componen de otras más elementales. Los hadrones están compuestos de quarks, antiquarks y de gluones. La carga eléctrica de los hadrones es un número entero, por lo que la suma de la carga de los quarks que los componen debe ser un entero.[12]
La interacción fuerte es la que predomina en los hadrones, aunque también se manifiestan la interacción electromagnética y la débil.[13] Las partículas con carga de color interactúan mediante gluones; los quarks y los gluones, al tener carga de color, están confinados a permanecer unidos en una partícula con carga de color neutra.[14] La formulación teórica de estas partículas la realizaron simultánea e independientemente Murray Gell-Mann y George Zweig en 1964, en el llamado modelo de quarks. Este modelo ha recibido numerosas confirmaciones experimentales desde entonces.
Los hadrones se subdividen en dos clases de partículas, los bariones y los mesones.
Los bariones son partículas que contienen tres quarks, algunos gluones y algunos antiquarks. Los bariones más conocidos son los nucleones; es decir, los protones y neutrones, además de otras partículas más masivas conocidas como hiperones.[15] Dentro de los bariones existe una intensa interacción entre los quarks a través de los gluones, que transporta la interacción fuerte. Como los gluones tienen carga de color, en los bariones las partículas que lo contienen cambian rápidamente de carga de color, pero el conjunto del barión permanece con carga de color neutra.[16]
Los bariones son también fermiones, por lo que el valor de su espín es 1/2, 3/2,... Como todas las partículas, los bariones tienen su partícula de antimateria llamada antibarión, que se forma con la unión de tres antiquarks.[16] Sin contar con los nucleones, la mayoría de bariones son inestables.[15]
Los mesones son partículas formadas por un quark, un antiquark y la partícula que las une, el gluon. Todos los mesones son inestables; pese a ello pueden encontrarse aislados debido a que las cargas de color del quark y del antiquark son opuestas, obteniendo un mesón con carga de color neutra. Los mesones son además bosones, ya que la suma de los espines, de sus quark-antiquark más la contribución del movimiento de estas partículas es un número entero.[17] Se conoce también que el mesón posee interacciones fuertes, débiles y electromagnéticas.[15]
En este grupo se incluyen el pion, el kaón, la J/ψ, y muchas otras. Puede que existan también mesones exóticos, aunque no existe evidencia experimental de ellos.
Entre las principales partículas conjeturadas teóricamente y que aún no han sido confirmadas por ningún experimento hasta el 2008, se encuentran:
La teoría de supersimetría plantea la existencia de partículas supercompañeras de las actuales partículas existentes.[22] Así, entre las más destacadas tenemos:
De acuerdo con su masa y rango de velocidad alcanzable las partículas hipotéticas (y las reales) pueden clasificarse en:
Las ecuaciones de campo de la física de la materia condensada son muy similares a las de la física de partículas. Por eso, mucha de la teoría de la física de partículas se puede aplicar a la física de la materia condensada, asignando a cada campo o excitación de la misma un modelo que incluye «cuasipartículas». Se incluyen:
Los más importantes laboratorios de física de partículas en el mundo son:
Éstos son los principales laboratorios pero existen muchos más.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.