Loading AI tools
conjunto de vectores es independiente si ninguno de ellos puede ser escrito con una combinación lineal de los restantes De Wikipedia, la enciclopedia libre
En álgebra lineal, se dice que un conjunto de vectores es linealmente independiente si ninguno de ellos puede ser escrito como combinación lineal de los restantes.
Por ejemplo, en , el conjunto de vectores es linealmente independiente, mientras que no lo es, ya que el tercero es la suma de los dos primeros.
|
Nótese que el símbolo a la derecha del signo igual no es cero, sino que simboliza al vector nulo .
La definición anterior también puede extenderse a un conjunto infinito de vectores, concretamente un conjunto cualquiera de vectores es linealmente dependiente si contiene un conjunto finito que sea linealmente dependiente.
Utilizando el concepto de subespacio generado por un conjunto de vectores podemos redefinir la independencia lineal así:
|
Esta idea es importante porque los conjuntos de vectores que son linealmente independientes, generan un subespacio vectorial y forman una base para dicho subespacio.
Entre las propiedades de los vectores linealmente dependientes e independientes encontramos:
En la imagen:
¿Son los tres vectores siguientes independientes?
Buscamos tres valores x, y y z que satisfagan la ecuación:
Lo que equivale al sistema de ecuaciones siguiente:
Dado que la única solución es la trivial (x = y = z = 0), los tres vectores son independientes.
Un método alternativo usa el hecho que n vectores en son linealmente independientes si y solo si el determinante de la matriz formada por estos vectores como columnas es distinto de cero.
Dados los vectores:
La matriz formada por éstos es:
El determinante de esta matriz es:
Ya que el determinante es no nulo, los vectores (1, 1) y (−3, 2) son linealmente independientes.
Sea V = Bn y consideremos los siguientes elementos en V:
Entonces e1, e2,..., en son linealmente independientes. Estos vectores constituyen la base canónica en R.
Supongamos que a1, a2,..., an son elementos de R tales que:
Sustituyendo e1, e2,..., en resulta:
Multiplicando:
Sumando coordenadas:
Por lo que se obtiene:
Así que:
Además:
Pero 0 es un vector, entonces:
Por lo que ai = 0 para todo i en {1,..., n}.
Entonces los vectores son linealmente independientes
Sea V el espacio vectorial de todas las funciones a variable real. Entonces las funciones et y e2t en V son linealmente independientes.
Supongamos que a y b son dos números reales tales que:
Para todos los valores de t. Necesitamos demostrar que a = 0 y b = 0. Para hacer esto dividimos por et (que es un número real diferente de cero, sea cual sea t) y restando obtenemos:
En otras palabras, la función bet debe ser independiente de t, lo cual ocurre únicamente cuando b = 0. Por lo tanto, a es cero.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.