Remove ads
familia de conjuntos matemáticos o colección de conjuntos que no necesariamente es un conjunto De Wikipedia, la enciclopedia libre
En teoría de conjuntos, lógica de clases y sus aplicaciones en matemáticas, una clase es una familia de conjuntos o colección de conjuntos (u otros objetos matemáticos) que no necesariamente es un conjunto. El concepto de clase aparece al intentar «agrupar» todos los conjuntos (u objetos) que comparten una cierta propiedad.
En la teoría de conjuntos de Zermelo-Fraenkel (ZF) se denomina de manera informal «clase» a toda propiedad expresada por una fórmula de su lenguaje, aun cuando pueda demostrarse que no existe un conjunto que contenga todos los objetos con esa propiedad, en cuyo caso se denomina una clase propia. El uso de las clases es entonces a través de notación. Sin embargo existen otras teorías, como la teoría de conjuntos de Von Neumann-Bernays-Gödel (NBG), en las que las clases son objetos de pleno derecho y puede establecerse una distinción entre ambos tipos de «colecciones de objetos».
Ejemplos de clases propias son la clase universal, la clase R de la paradoja de Russell o la clase de todos los ordinales.
En ZF se introduce la noción de clase como un convenio de notación:
|
Las clases suelen denotarse por letras mayúsculas, A, B, ... Esta definición se complementa con una serie de reglas informales para interpretar las fórmulas donde aparezcan clases. Por ejemplo, si A y B son clases definidas por las fórmulas φ y ψ, entonces:
Puede demostrarse que a cada conjunto c le corresponde una clase —precisamente, la clase {x: x ∈ c}—, pero también que existen clases propias, clases que no pueden ser conjuntos, o de lo contrario llevan a contradicción. Algunos ejemplos son la clase universal y la clase R = {x: x ∉ x} o la clase de todos los ordinales On = {α: α es un ordinal}. Se distingue a las clases propias de los conjuntos de manera sencilla:
|
Los axiomas de NBG establecen las propiedades de clases propias y conjuntos, de tal manera puede demostrarse la existencia de las clases propias mencionadas anteriormente. Sin embargo, NBG es una extensión conservativa de ZF: restringiéndose a las fórmulas que sólo «hablan de conjuntos», NBG y ZF prueban los mismos teoremas.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.