Loading AI tools
De Wikipedia, la enciclopedia libre
En geometría, una homología es una transformación homográfica resultante de efectuar una proyección desde un punto, en la que a cada uno de los puntos de una figura plana le corresponden, respectivamente, un punto de su figura homóloga, cumpliéndose que:
Para determinar la imagen Q' de un punto Q del plano, nos bastaremos de ese par de puntos P y P' que tenemos originalmente. Trazamos una recta PQ, que tendrá un punto doble sobre el eje de homología. La imagen de esa recta PQ tendrá que pasar forzosamente por ese punto doble y por P'. Sobre la imagen de PQ tendrá que estar Q'. También tendrá que estar Q' sobre la recta que une el centro de homología O y Q. Interseccionando PQ' y OQ lograremos la imagen Q' buscada. Para hallar la imagen I' de un punto I en el infinito (punto virtual o impropio), se procede de manera semejante. Se traza la recta PI (que será una dirección), que corta al eje de homología (e) en un punto doble Q. Dicha recta se transforma en la recta P'Q. La imagen del punto I, como cualquier otro punto, se halla sobre la intersección de la recta P'Q con la recta OI (en el plano euclídeo, las rectas PI y IOI' son paralelas). Se verifica que la recta L, paralela al eje de homología e por el punto I', el lugar geométrico de todas las imágenes de los puntos impropios del plano, y recibe la denominación de recta límite.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.