Loading AI tools
De Wikipedia, la enciclopedia libre
En matemáticas, una función:
es sobreyectiva,[1] epiyectiva, suprayectiva,[1] suryectiva, exhaustiva,[1] onto o subyectiva si está aplicada sobre todo el codominio, es decir, cuando cada elemento de es la imagen de como mínimo un elemento de .
Formalmente,
Una función sobreyectiva es una función cuya imagen es igual a su codominio. Equivalentemente, una función con dominio y codominio es sobreyectiva si para cada en existe al menos una en tal que .
Simbólicamente
En ocasiones para denotar que una función es sobreyectiva se utiliza la notación:
Dados dos conjuntos y , entre los cuales existe una función sobreyectiva , se tiene que los cardinales cumplen:
Si además existe otra aplicación sobreyectiva , entonces puede probarse que existe una aplicación biyectiva entre y , por el teorema de Cantor-Bernstein-Schröder.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.