formon kiel S x ( ω ) = Π k = 1 N ( c k − j ω ) ( c k ∗ + j ω ) Π k = 1 D ( d k − j ω ) ( d k ∗ + j ω ) {\displaystyle S_{x}(\omega )={\frac {\Pi _{k=1}^{N}(c_{k}-j\omega
estas x k a = 1 n ∑ i = 1 n x i 2 = x 1 2 + x 2 2 + ⋯ + x n 2 n {\displaystyle x_{ka}={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{2}}}={\sqrt {\frac {x
partikloj: Z ( β ) = 1 N ! h 3 N ( ∫ V d 3 x i ∫ d 3 p i ) N exp ( − β 2 m ∑ i p i 2 − β 2 ∑ i ∑ j < i u ( ‖ x i − x j ‖ ) ) {\displaystyle Z(\beta )={\frac