vektora spaco kun kompleta nomro From Wikipedia, the free encyclopedia
En analitiko, banaĥa spaco estas vektora spaco kun kompleta normo.
Supozu ke estas la kampo de la reeloj aŭ la kompleksaj nombroj. Do, banaĥa spaco super la korpo konsistas el la ĉi-suba dateno:
kiu plenumas la jenan aksiomon:
Alivorte, pri ajna vico de vektoroj , se la sumo de normoj konverĝas,
do ankaŭ konverĝas la sumo de la vektoroj mem:
Ĉiu hilberta spaco estas banaĥa spaco.
Ĉiu finidimensia vektora spaco kun normo estas banaĥa; kompleteco estas netriviala nur pri nefinidimensiaj spacoj.
La banaĥa spaco estas nomita laŭ la pola matematikisto Stefan Banach (Esperante Stefano Banaĥo).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.