From Wikipedia, the free encyclopedia
En matematiko, 3-sternaĵo estas 3-dimensia sternaĵo. La kategorioj de topologieco, peca lineareco kaj glateco estas ĉiuj ekvivalentaj en tri dimensioj, tiel malgranda distingo estas kutime farata inter topologiaj 3-sternaĵoj kaj glataj 3-sternaĵoj.
3-sternaĵa teorio estas konsiderata kiel parto de malalte dimensia topologio aŭ geometria topologio.
Fenomenoj en tri dimensioj povas esti sufiĉe malsamaj de tiuj por aliaj dimensioj, kaj tiel estas specialigitaj manieroj, kiuj ne ĝeneraliĝas al dimensioj pli grandaj ol tri. Eble surprize, ĉi-tiu speciala rolo gvidis al malkovro de proksimaj ligoj al sternaĵoj de la aliaj terenoj – noda teorio, geometria grupa teorio, hiperbola geometrio, nombroteorio, topologia kvantuma kampa teorio, kalibra teorio, diferencialaj ekvacioj en partaj derivaĵoj.
La ĉefa ideo estas studi 3-sternaĵojn per konsiderado de specialaj surfacoj enigitaj en ilin. Oni povas elekti la surfacon taŭge en la 3-sternaĵo, tiel ke ĝi estas nekunpremebla surfaco.
La fundamentaj grupoj de 3-sternaĵoj informdone montras la geometrian kaj topologian informon pri la 3-sternaĵo.
Jenaj ekzemploj estas aparte konataj kaj studitaj.
La klasoj estas ne nepre reciproke malinkluzivaj.
Iuj rezultoj estas nomataj konjektoj sekve de sia historio.
Pure topologiaj rezultoj:
Teoremoj kie geometrio ludas gravan rolon en la pruvo:
Rezultoj eksplicite ligantaj geometrion kaj topologion:
Iuj el la konjektoj estas opiniataj kiel solvitaj.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.