Natural gum

Thickening agent From Wikipedia, the free encyclopedia

Natural gum

Natural gums are polysaccharides of natural origin, capable of causing a large increase in a solution's viscosity, even at small concentrations. They are mostly botanical gums, found in the woody elements of plants or in seed coatings.

Natural gum from plum tree

Human uses

Gums are used in the food industry as thickening agents, gelling agents, emulsifying agents, and stabilizers, and in other industrial adhesives, binding agents, crystal inhibitors, clarifying agents, encapsulating agents, flocculating agents, swelling agents, foam stabilizers, etc. When consumed by humans, many of these gums are fermented by the microbes that inhabit the lower gastrointestinal tract (microbiome) and may influence the ecology and functions of these microscopic communities.[1][2]

Commercial significance

Humans have used natural gums for various purposes, including chewing and the manufacturing of a wide range of products – such as varnish and lacquerware. Before the invention of synthetic equivalents, trade in gum formed part of the economy in places such as the Arabian peninsula (hence the name "gum arabic"), West Africa,[3] East Africa (copal) and northern New Zealand (kauri gum).

Examples

Summarize
Perspective

Natural gums can be classified according to their origin. They can also be classified as uncharged or ionic polymers (polyelectrolytes). Examples include (with E number food additive code):

More information Source, Classification ...
Source Classification Natural gum E number biological origin
obtained from seaweeds Polyelectrolytes Agar E406
obtained from seaweeds Polyelectrolytes Alginic acid E400
obtained from seaweeds Polyelectrolytes Sodium alginate E401
obtained from seaweeds Polyelectrolytes Carrageenan E407
obtained from non-marine botanical resources Polyelectrolytes Gum arabic E414 from the sap of Acacia trees
obtained from non-marine botanical resources Polyelectrolytes Gum ghatti from the sap of Anogeissus trees
obtained from non-marine botanical resources Polyelectrolytes Gum tragacanth E413 from the sap of Astragalus shrubs
obtained from non-marine botanical resources Polyelectrolytes Karaya gum E416 from the sap of Sterculia trees
obtained from non-marine botanical resources Uncharged Guar gum E412 from guar beans
obtained from non-marine botanical resources Uncharged Locust bean gum E410 from the seeds of the carob tree
obtained from non-marine botanical resources Uncharged Beta-glucan from oat or barley bran
obtained from non-marine botanical resources Uncharged Dammar gum from the sap of Dipterocarpaceae trees
obtained from non-marine botanical resources Uncharged Glucomannan E425 from the konjac plant
obtained from non-marine botanical resources Uncharged Psyllium seed husks from the Plantago plant
obtained from non-marine botanical resources Uncharged Tara gum E417 from the seeds of the tara tree
produced by bacterial fermentation Polyelectrolytes Gellan gum E418
produced by bacterial fermentation Polyelectrolytes Xanthan gum E415
Close

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.