Loading AI tools
Theorem in probability theory From Wikipedia, the free encyclopedia
The Yamada–Watanabe theorem is a result from probability theory saying that for a large class of stochastic differential equations a weak solution with pathwise uniqueness implies a strong solution and uniqueness in distribution. In its original form, the theorem was stated for -dimensional Itô equations and was proven by Toshio Yamada and Shinzō Watanabe in 1971.[1] Since then, many generalizations appeared particularly one for general semimartingales by Jean Jacod from 1980.[2]
Jean Jacod generalized the result to SDEs of the form
where is a semimartingale and the coefficient can depend on the path of .[2]
Further generalisations were done by Hans-Jürgen Engelbert (1991[3]) and Thomas G. Kurtz (2007[4]). For SDEs in Banach spaces there is a result from Martin Ondrejat (2004[5]), one by Michael Röckner, Byron Schmuland and Xicheng Zhang (2008[6]) and one by Stefan Tappe (2013[7]).
The converse of the theorem is also true and called the dual Yamada–Watanabe theorem. The first version of this theorem was proven by Engelbert (1991[3]) and a more general version by Alexander Cherny (2002[8]).
Let and be the space of continuous functions. Consider the -dimensional Itô equation
where
We say uniqueness in distribution (or weak uniqueness), if for two arbitrary solutions and defined on (possibly different) filtered probability spaces and , we have for their distributions , where .
We say pathwise uniqueness (or strong uniqueness) if any two solutions and , defined on the same filtered probability spaces with the same -Brownian motion, are indistinguishable processes, i.e. we have -almost surely that
Assume the described setting above is valid, then the theorem is:
Jacod's result improved the statement with the additional statement that
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.