Loading AI tools
From Wikipedia, the free encyclopedia
The Woods–Saxon potential is a mean field potential for the nucleons (protons and neutrons) inside the atomic nucleus, which is used to describe approximately the forces applied on each nucleon, in the nuclear shell model for the structure of the nucleus. The potential is named after Roger D. Woods and David S. Saxon.
The form of the potential, in terms of the distance r from the center of nucleus, is:
where V0 (having dimension of energy) represents the potential well depth, a is a length representing the "surface thickness" of the nucleus, and is the nuclear radius where r0 = 1.25 fm and A is the mass number.
Typical values for the parameters are: V0 ≈ 50 MeV, a ≈ 0.5 fm.
For large atomic number A this potential is similar to a potential well. It has the following desired properties
The Schrödinger equation of this potential can be solved analytically, by transforming it into a hypergeometric differential equation. The radial part of the wavefunction solution is given by
where , , , and .[1] Here is the hypergeometric function.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.