Remove ads
Topological space consisting of trivial homotopy groups From Wikipedia, the free encyclopedia
In mathematics, a topological space is said to be weakly contractible if all of its homotopy groups are trivial.
It follows from Whitehead's Theorem that if a CW-complex is weakly contractible then it is contractible.
Define to be the inductive limit of the spheres . Then this space is weakly contractible. Since is moreover a CW-complex, it is also contractible. See Contractibility of unit sphere in Hilbert space for more.
The Long Line is an example of a space which is weakly contractible, but not contractible. This does not contradict Whitehead theorem since the Long Line does not have the homotopy type of a CW-complex. Another prominent example for this phenomenon is the Warsaw circle.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.