Loading AI tools
Generalization of category From Wikipedia, the free encyclopedia
In mathematics, a bicategory (or a weak 2-category) is a concept in category theory used to extend the notion of category to handle the cases where the composition of morphisms is not (strictly) associative, but only associative up to an isomorphism. The notion was introduced in 1967 by Jean Bénabou.
Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to tricategories, and more generally to weak n-categories for n-categories.
Formally, a bicategory B consists of:
with some more structure:
The horizontal composition is required to be associative up to a natural isomorphism α between morphisms and . Some more coherence axioms, similar to those needed for monoidal categories, are moreover required to hold: a monoidal category is the same as a bicategory with one 0-cell.
Consider a simple monoidal category, such as the monoidal preorder Bool[1] based on the monoid M = ({T, F}, ∧, T). As a category this is presented with two objects {T, F} and single morphism g: F → T.
We can reinterpret this monoid as a bicategory with a single object x (one 0-cell); this construction is analogous to construction of a small category from a monoid. The objects {T, F} become morphisms, and the morphism g becomes a natural transformation (forming a functor category for the single hom-category B(x, x)).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.