Loading AI tools
Effective particle coupling beyond tree level From Wikipedia, the free encyclopedia
In quantum electrodynamics, the vertex function describes the coupling between a photon and an electron beyond the leading order of perturbation theory. In particular, it is the one particle irreducible correlation function involving the fermion , the antifermion , and the vector potential A.
The vertex function can be defined in terms of a functional derivative of the effective action Seff as
The dominant (and classical) contribution to is the gamma matrix , which explains the choice of the letter. The vertex function is constrained by the symmetries of quantum electrodynamics — Lorentz invariance; gauge invariance or the transversality of the photon, as expressed by the Ward identity; and invariance under parity — to take the following form:
where , is the incoming four-momentum of the external photon (on the right-hand side of the figure), and F1(q2) and F2(q2) are form factors that depend only on the momentum transfer q2. At tree level (or leading order), F1(q2) = 1 and F2(q2) = 0. Beyond leading order, the corrections to F1(0) are exactly canceled by the field strength renormalization. The form factor F2(0) corresponds to the anomalous magnetic moment a of the fermion, defined in terms of the Landé g-factor as:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.