Remove ads
Set of topological invariants From Wikipedia, the free encyclopedia
In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.
The Stiefel–Whitney class was named for Eduard Stiefel and Hassler Whitney and is an example of a -characteristic class associated to real vector bundles.
In algebraic geometry one can also define analogous Stiefel–Whitney classes for vector bundles with a non-degenerate quadratic form, taking values in etale cohomology groups or in Milnor K-theory. As a special case one can define Stiefel–Whitney classes for quadratic forms over fields, the first two cases being the discriminant and the Hasse–Witt invariant (Milnor 1970).
For a real vector bundle E, the Stiefel–Whitney class of E is denoted by w(E). It is an element of the cohomology ring
where X is the base space of the bundle E, and (often alternatively denoted by ) is the commutative ring whose only elements are 0 and 1. The component of in is denoted by and called the i-th Stiefel–Whitney class of E. Thus,
where each is an element of .
The Stiefel–Whitney class is an invariant of the real vector bundle E; i.e., when F is another real vector bundle which has the same base space X as E, and if F is isomorphic to E, then the Stiefel–Whitney classes and are equal. (Here isomorphic means that there exists a vector bundle isomorphism which covers the identity .) While it is in general difficult to decide whether two real vector bundles E and F are isomorphic, the Stiefel–Whitney classes and can often be computed easily. If they are different, one knows that E and F are not isomorphic.
As an example, over the circle , there is a line bundle (i.e., a real vector bundle of rank 1) that is not isomorphic to a trivial bundle. This line bundle L is the Möbius strip (which is a fiber bundle whose fibers can be equipped with vector space structures in such a way that it becomes a vector bundle). The cohomology group has just one element other than 0. This element is the first Stiefel–Whitney class of L. Since the trivial line bundle over has first Stiefel–Whitney class 0, it is not isomorphic to L.
Two real vector bundles E and F which have the same Stiefel–Whitney class are not necessarily isomorphic. This happens for instance when E and F are trivial real vector bundles of different ranks over the same base space X. It can also happen when E and F have the same rank: the tangent bundle of the 2-sphere and the trivial real vector bundle of rank 2 over have the same Stiefel–Whitney class, but they are not isomorphic. But if two real line bundles over X have the same Stiefel–Whitney class, then they are isomorphic.
The Stiefel–Whitney classes get their name because Eduard Stiefel and Hassler Whitney discovered them as mod-2 reductions of the obstruction classes to constructing everywhere linearly independent sections of the vector bundle E restricted to the i-skeleton of X. Here n denotes the dimension of the fibre of the vector bundle .
To be precise, provided X is a CW-complex, Whitney defined classes in the i-th cellular cohomology group of X with twisted coefficients. The coefficient system being the -st homotopy group of the Stiefel manifold of linearly independent vectors in the fibres of E. Whitney proved that if and only if E, when restricted to the i-skeleton of X, has linearly-independent sections.
Since is either infinite-cyclic or isomorphic to , there is a canonical reduction of the classes to classes which are the Stiefel–Whitney classes. Moreover, whenever , the two classes are identical. Thus, if and only if the bundle is orientable.
The class contains no information, because it is equal to 1 by definition. Its creation by Whitney was an act of creative notation, allowing the Whitney sum Formula to be true.
Throughout, denotes singular cohomology of a space X with coefficients in the group G. The word map means always a continuous function between topological spaces.
The Stiefel-Whitney characteristic class of a finite rank real vector bundle E on a paracompact base space X is defined as the unique class such that the following axioms are fulfilled:
The uniqueness of these classes is proved for example, in section 17.2 – 17.6 in Husemoller or section 8 in Milnor and Stasheff. There are several proofs of the existence, coming from various constructions, with several different flavours, their coherence is ensured by the unicity statement.
This section describes a construction using the notion of classifying space.
For any vector space V, let denote the Grassmannian, the space of n-dimensional linear subspaces of V, and denote the infinite Grassmannian
Recall that it is equipped with the tautological bundle a rank n vector bundle that can be defined as the subbundle of the trivial bundle of fiber V whose fiber at a point is the subspace represented by W.
Let , be a continuous map to the infinite Grassmannian. Then, up to isomorphism, the bundle induced by the map f on X
depends only on the homotopy class of the map [f]. The pullback operation thus gives a morphism from the set
of maps modulo homotopy equivalence, to the set
of isomorphism classes of vector bundles of rank n over X.
(The important fact in this construction is that if X is a paracompact space, this map is a bijection. This is the reason why we call infinite Grassmannians the classifying spaces of vector bundles.)
Now, by the naturality axiom (4) above, . So it suffices in principle to know the values of for all j. However, the cohomology ring is free on specific generators arising from a standard cell decomposition, and it then turns out that these generators are in fact just given by . Thus, for any rank-n bundle, , where f is the appropriate classifying map. This in particular provides one proof of the existence of the Stiefel–Whitney classes.
We now restrict the above construction to line bundles, ie we consider the space, of line bundles over X. The Grassmannian of lines is just the infinite projective space
which is doubly covered by the infinite sphere with antipodal points as fibres. This sphere is contractible, so we have
Hence P∞(R) is the Eilenberg-Maclane space .
It is a property of Eilenberg-Maclane spaces, that
for any X, with the isomorphism given by f → f*η, where η is the generator
Applying the former remark that α : [X, Gr1] → Vect1(X) is also a bijection, we obtain a bijection
this defines the Stiefel–Whitney class w1 for line bundles.
If Vect1(X) is considered as a group under the operation of tensor product, then the Stiefel–Whitney class, w1 : Vect1(X) → H1(X; Z/2Z), is an isomorphism. That is, w1(λ ⊗ μ) = w1(λ) + w1(μ) for all line bundles λ, μ → X.
For example, since H1(S1; Z/2Z) = Z/2Z, there are only two line bundles over the circle up to bundle isomorphism: the trivial one, and the open Möbius strip (i.e., the Möbius strip with its boundary deleted).
The same construction for complex vector bundles shows that the Chern class defines a bijection between complex line bundles over X and H2(X; Z), because the corresponding classifying space is P∞(C), a K(Z, 2). This isomorphism is true for topological line bundles, the obstruction to injectivity of the Chern class for algebraic vector bundles is the Jacobian variety.
The bijection above for line bundles implies that any functor θ satisfying the four axioms above is equal to w, by the following argument. The second axiom yields θ(γ1) = 1 + θ1(γ1). For the inclusion map i : P1(R) → P∞(R), the pullback bundle is equal to . Thus the first and third axiom imply
Since the map
is an isomorphism, and θ(γ1) = w(γ1) follow. Let E be a real vector bundle of rank n over a space X. Then E admits a splitting map, i.e. a map f : X′ → X for some space X′ such that is injective and for some line bundles . Any line bundle over X is of the form for some map g, and
by naturality. Thus θ = w on . It follows from the fourth axiom above that
Since is injective, θ = w. Thus the Stiefel–Whitney class is the unique functor satisfying the four axioms above.
Although the map is a bijection, the corresponding map is not necessarily injective in higher dimensions. For example, consider the tangent bundle for n even. With the canonical embedding of in , the normal bundle to is a line bundle. Since is orientable, is trivial. The sum is just the restriction of to , which is trivial since is contractible. Hence w(TSn) = w(TSn)w(ν) = w(TSn ⊕ ν) = 1. But, provided n is even, TSn → Sn is not trivial; its Euler class , where [Sn] denotes a fundamental class of Sn and χ the Euler characteristic.
If we work on a manifold of dimension n, then any product of Stiefel–Whitney classes of total degree n can be paired with the Z/2Z-fundamental class of the manifold to give an element of Z/2Z, a Stiefel–Whitney number of the vector bundle. For example, if the manifold has dimension 3, there are three linearly independent Stiefel–Whitney numbers, given by . In general, if the manifold has dimension n, the number of possible independent Stiefel–Whitney numbers is the number of partitions of n.
The Stiefel–Whitney numbers of the tangent bundle of a smooth manifold are called the Stiefel–Whitney numbers of the manifold. They are known to be cobordism invariants. It was proven by Lev Pontryagin that if B is a smooth compact (n+1)–dimensional manifold with boundary equal to M, then the Stiefel-Whitney numbers of M are all zero.[1] Moreover, it was proved by René Thom that if all the Stiefel-Whitney numbers of M are zero then M can be realised as the boundary of some smooth compact manifold.[2]
One Stiefel–Whitney number of importance in surgery theory is the de Rham invariant of a (4k+1)-dimensional manifold,
The Stiefel–Whitney classes are the Steenrod squares of the Wu classes , defined by Wu Wenjun in 1947.[3] Most simply, the total Stiefel–Whitney class is the total Steenrod square of the total Wu class: . Wu classes are most often defined implicitly in terms of Steenrod squares, as the cohomology class representing the Steenrod squares. Let the manifold X be n dimensional. Then, for any cohomology class x of degree ,
Or more narrowly, we can demand , again for cohomology classes x of degree .[4]
The element is called the i + 1 integral Stiefel–Whitney class, where β is the Bockstein homomorphism, corresponding to reduction modulo 2, Z → Z/2Z:
For instance, the third integral Stiefel–Whitney class is the obstruction to a Spinc structure.
Over the Steenrod algebra, the Stiefel–Whitney classes of a smooth manifold (defined as the Stiefel–Whitney classes of the tangent bundle) are generated by those of the form . In particular, the Stiefel–Whitney classes satisfy the Wu formula, named for Wu Wenjun:[5]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.