The CYP11B1 gene encodes 11β-hydroxylase, a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The product of this CYP11B1 gene is the 11β-hydroxylase protein. This protein localizes to the mitochondrial inner membrane and is involved in the conversion of various steroids in the adrenal cortex. Transcript variants encoding different isoforms have been noted for this gene.[6]
11β-hydroxylase is a steroidogenic enzyme, i.e. the enzyme involved in the metabolism of steroids. The enzyme is primarily localized in the zona glomerulosa and zona fasciculata of the adrenal cortex. The enzyme functions by introducing a hydroxyl group at carbon position 11β on the steroid nucleus, thereby facilitating the conversion of certain steroids.
Humans have two isozymes with 11β-hydroxylase activity: CYP11B1 and CYP11B2.
CYP11B1 (11β-hydroxylase) is expressed at high levels and is regulated by ACTH, while CYP11B2 (aldosterone synthase) is usually expressed at low levels and is regulated by angiotensin II. In addition to the 11β-hydroxylase activity, both isozymes have 18-hydroxylase activity.[10] The CYP11B1 isozyme has strong 11β-hydroxylase activity, but the activity of 18-hydroxylase is only one-tenth of CYP11B2.[11] The weak 18-hydroxylase activity of CYP11B1 explains why an adrenal with suppressed CYP11B2 expression continues to synthesize 18-hydroxycorticosterone.[12]
Here are some of the steroids, grouped by catalytic activity of the CYP11B1 isozyme:
11β-hydroxylase has strong[13] catalytic activity during conversion of 11-deoxycortisol to cortisol and 11-deoxycorticosterone to corticosterone, by catalyzing the hydroxylation of carbon hydrogen bond at 11-beta position. Note the extra "–OH" added at the 11 position (near the center, on ring "C"):
As a mitochondrial P450 system, P450c11 is dependent on two electron transfer proteins, adrenodoxin reductase and adrenodoxin that transfer 2 electrons from NADPH to the P450 for each monooxygenase reaction catalyzed by the enzyme. In most respects this process of electron transfer appears similar to that of P450scc system that catalyzes cholesterol side chain cleavage.[25] Similar to P450scc the process of electrons transfer is leaky leading to superoxide production. The rate of electron leakage during metabolism depends on the functional groups of the steroid substrate.[26]
The expression of the enzyme in adrenocortical cells is regulated by the trophic hormone corticotropin (ACTH).[27]
This article incorporates public domain material from "Entrez Gene: CYP11B1 cytochrome P450, family 11, subfamily B, polypeptide 1". Reference Sequence collection. National Center for Biotechnology Information. Retrieved 30 November 2020. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the mitochondrial inner membrane and is involved in the conversion of progesterone to cortisol in the adrenal cortex. Mutations in this gene cause congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency. Transcript variants encoding different isoforms have been noted for this gene. This article incorporates text from this source, which is in the public domain.
Zöllner A, Kagawa N, Waterman MR, Nonaka Y, Takio K, Shiro Y, etal. (February 2008). "Purification and functional characterization of human 11beta hydroxylase expressed in Escherichia coli". The FEBS Journal. 275 (4): 799–810. doi:10.1111/j.1742-4658.2008.06253.x. PMID18215163. S2CID45997341.
van Rooyen D, Gent R, Barnard L, Swart AC (April 2018). "The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway". The Journal of Steroid Biochemistry and Molecular Biology. 178: 203–212. doi:10.1016/j.jsbmb.2017.12.014. PMID29277707. S2CID3700135.
Storbeck KH, Mostaghel EA (2019). "Canonical and Noncanonical Androgen Metabolism and Activity". Prostate Cancer. Advances in Experimental Medicine and Biology. Vol.1210. Springer. pp.239–277. doi:10.1007/978-3-030-32656-2_11. ISBN978-3-030-32655-5. PMID31900912. S2CID209748543. CYP11B1 and 2 have also been shown to 11β-hydroxylate T, yielding 11β-hydroxytestosterone (11OHT), though the levels produced by the adrenal are low due to the limited availability of adrenal derived T
Nicod J, Dick B, Frey FJ, Ferrari P (February 2004). "Mutation analysis of CYP11B1 and CYP11B2 in patients with increased 18-hydroxycortisol production". Molecular and Cellular Endocrinology. 214 (1–2): 167–74. doi:10.1016/j.mce.2003.10.056. PMID15062555. S2CID617448.
Helmberg A, Ausserer B, Kofler R (November 1992). "Frame shift by insertion of 2 basepairs in codon 394 of CYP11B1 causes congenital adrenal hyperplasia due to steroid 11 beta-hydroxylase deficiency". J. Clin. Endocrinol. Metab. 75 (5): 1278–81. doi:10.1210/jcem.75.5.1430088. PMID1430088.
Kawamoto T, Mitsuuchi Y, Toda K, Miyahara K, Yokoyama Y, Nakao K, Hosoda K, Yamamoto Y, Imura H, Shizuta Y (September 1990). "Cloning of cDNA and genomic DNA for human cytochrome P-45011 beta". FEBS Lett. 269 (2): 345–9. doi:10.1016/0014-5793(90)81190-Y. PMID2401360. S2CID35151332.
Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (July 1999). "Characterization of single-nucleotide polymorphisms in coding regions of human genes". Nat. Genet. 22 (3): 231–8. doi:10.1038/10290. PMID10391209. S2CID195213008.
Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A (July 1999). "Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis". Nat. Genet. 22 (3): 239–47. doi:10.1038/10297. PMID10391210. S2CID4636523.