In category theory, a branch of mathematics, a stable ∞-category is an ∞-category such that[1]

The homotopy category of a stable ∞-category is triangulated.[2] A stable ∞-category admits finite limits and colimits.[3]

Examples: the derived category of an abelian category and the ∞-category of spectra are both stable.

A stabilization of an ∞-category C having finite limits and base point is a functor from the stable ∞-category S to C. It preserves limit. The objects in the image have the structure of infinite loop spaces; whence, the notion is a generalization of the corresponding notion (stabilization (topology)) in classical algebraic topology.

By definition, the t-structure of a stable ∞-category is the t-structure of its homotopy category. Let C be a stable ∞-category with a t-structure. Then every filtered object in C gives rise to a spectral sequence , which, under some conditions, converges to [4] By the Dold–Kan correspondence, this generalizes the construction of the spectral sequence associated to a filtered chain complex of abelian groups.

Notes

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.