Rhombicosidodecahedron

Archimedean solid From Wikipedia, the free encyclopedia

Rhombicosidodecahedron

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

Rhombicosidodecahedron

(Click here for rotating model)
TypeArchimedean solid
Uniform polyhedron
ElementsF = 62, E = 120, V = 60 (χ = 2)
Faces by sides20{3}+30{4}+12{5}
Conway notationeD or aaD
Schläfli symbolsrr{5,3} or
t0,2{5,3}
Wythoff symbol3 5 | 2
Coxeter diagram
Symmetry groupIh, H3, [5,3], (*532), order 120
Rotation groupI, [5,3]+, (532), order 60
Dihedral angle3-4: 159°05′41″ (159.09°)
4-5: 148°16′57″ (148.28°)
ReferencesU27, C30, W14
PropertiesSemiregular convex

Colored faces

3.4.5.4
(Vertex figure)

Deltoidal hexecontahedron
(dual polyhedron)

Net

It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges.

Names

Thumb
Thumb
Thumb

Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicosidodecahedron, being short for truncated icosidodecahedral rhombus, with icosidodecahedral rhombus being his name for a rhombic triacontahedron.[1][2] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound.

Dimensions

Summarize
Perspective

For a rhombicosidodecahedron with edge length a, its surface area and volume are:

Geometric relations

Summarize
Perspective

If you expand an icosidodecahedron by moving the faces away from the origin the right amount, without changing the orientation or size of the faces, and patch the square holes in the result, you get a rhombicosidodecahedron. Therefore, it has the same number of triangles as an icosahedron and the same number of pentagons as a dodecahedron, with a square for each edge of either.

Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron. Therefore, it has the same number of squares as five cubes.

Two clusters of faces of the bilunabirotunda, the lunes (each lune featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the rhombicosidodecahedron, then a cube can be put between the bilunabirotundae at the very center of the rhombicosidodecahedron.

The rhombicosidodecahedron shares the vertex arrangement with the small stellated truncated dodecahedron, and with the uniform compounds of six or twelve pentagrammic prisms.

The Zometool kits for making geodesic domes and other polyhedra use slotted balls as connectors. The balls are "expanded" rhombicosidodecahedra, with the squares replaced by rectangles. The expansion is chosen so that the resulting rectangles are golden rectangles.

Twelve of the 92 Johnson solids are derived from the rhombicosidodecahedron, four of them by rotation of one or more pentagonal cupolae: the gyrate, parabigyrate, metabigyrate, and trigyrate rhombicosidodecahedron. Eight more can be constructed by removing up to three cupolae, sometimes also rotating one or more of the other cupolae.

Cartesian coordinates

Cartesian coordinates for the vertices of a rhombicosidodecahedron with an edge length of 2 centered at the origin are all even permutations of:[3]

(±1, ±1, ±φ3),
φ2, ±φ, ±2φ),
(±(2+φ), 0, ±φ2),

where φ = 1 + 5/2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely φ6+2 = 8φ+7 for edge length 2. For unit edge length, R must be halved, giving

R = 8φ+7/2 = 11+45/2 2.233.

Orthogonal projections

Thumb
Thumb
Orthogonal projections in Geometria (1543) by Augustin Hirschvogel

The rhombicosidodecahedron has six special orthogonal projections, centered, on a vertex, on two types of edges, and three types of faces: triangles, squares, and pentagons. The last two correspond to the A2 and H2 Coxeter planes.

More information Centered by, Vertex ...
Orthogonal projections
Centered by Vertex Edge
3-4
Edge
5-4
Face
Square
Face
Triangle
Face
Pentagon
Solid Thumb Thumb Thumb
Wireframe Thumb Thumb Thumb Thumb Thumb Thumb
Projective
symmetry
[2] [2] [2] [2] [6] [10]
Dual
image
Thumb Thumb Thumb Thumb Thumb Thumb
Close

Spherical tiling

The rhombicosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

More information Orthographic projection, Stereographic projections ...
Close
Summarize
Perspective
Thumb
Expansion of either a dodecahedron or an icosahedron creates a rhombicosidodecahedron.
Thumb
A version with golden rectangles is used as vertex element of the construction set Zometool.[4]
More information Family of uniform icosahedral polyhedra, Symmetry: [5,3], (*532) ...
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5
Close

Symmetry mutations

This polyhedron is topologically related as a part of a sequence of cantellated polyhedra with vertex figure (3.4.n.4), which continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

More information *n32 symmetry mutation of expanded tilings: 3.4.n.4, Symmetry*n32 [n,3] ...
*n32 symmetry mutation of expanded tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paracomp.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4..4
Close

Johnson solids

There are 12 related Johnson solids, 5 by diminishment, and 8 including gyrations:

Diminished
J5
Thumb
76
Thumb
80
Thumb
81
Thumb
83
Thumb
Gyrated and/or diminished
72
Thumb
73
Thumb
74
Thumb
75
Thumb
77
Thumb
78
Thumb
79
Thumb
82
Thumb

Vertex arrangement

The rhombicosidodecahedron shares its vertex arrangement with three nonconvex uniform polyhedra: the small stellated truncated dodecahedron, the small dodecicosidodecahedron (having the triangular and pentagonal faces in common), and the small rhombidodecahedron (having the square faces in common).

It also shares its vertex arrangement with the uniform compounds of six or twelve pentagrammic prisms.

Thumb
Rhombicosidodecahedron
Thumb
Small dodecicosidodecahedron
Thumb
Small rhombidodecahedron
Thumb
Small stellated truncated dodecahedron
Thumb
Compound of six pentagrammic prisms
Thumb
Compound of twelve pentagrammic prisms

Rhombicosidodecahedral graph

Quick Facts Rhombicosidodecahedral graph, Vertices ...
Rhombicosidodecahedral graph
Thumb
Pentagon centered Schlegel diagram
Vertices60
Edges120
Automorphisms120
PropertiesQuartic graph, Hamiltonian, regular
Table of graphs and parameters
Close

In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph.[5]

Thumb
Square centered Schlegel diagram

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.