Loading AI tools
Mathematical construction in category theory From Wikipedia, the free encyclopedia
In mathematics, a skeleton of a category is a subcategory that, roughly speaking, does not contain any extraneous isomorphisms. In a certain sense, the skeleton of a category is the "smallest" equivalent category, which captures all "categorical properties" of the original. In fact, two categories are equivalent if and only if they have isomorphic skeletons. A category is called skeletal if isomorphic objects are necessarily identical.
A skeleton of a category C is an equivalent category D in which isomorphic objects are equal. Typically, a skeleton is taken to be a subcategory D of C such that:
It is a basic fact that every small category has a skeleton; more generally, every accessible category has a skeleton.[citation needed] (This is equivalent to the axiom of choice.) Also, although a category may have many distinct skeletons, any two skeletons are isomorphic as categories, so up to isomorphism of categories, the skeleton of a category is unique.
The importance of skeletons comes from the fact that they are (up to isomorphism of categories), canonical representatives of the equivalence classes of categories under the equivalence relation of equivalence of categories. This follows from the fact that any skeleton of a category C is equivalent to C, and that two categories are equivalent if and only if they have isomorphic skeletons.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.