Loading AI tools
From Wikipedia, the free encyclopedia
In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (October 2019) |
The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies
The formula was stated by Riemann in his notable paper "On the Number of Primes Less Than a Given Magnitude" (1859) and was finally proved by Mangoldt in 1905.
Backlund gives an explicit form of the error for all T > 2:
Under the Lindelöf and Riemann hypotheses the error term can be improved to and respectively.[1]
Similarly, for any primitive Dirichlet character χ modulo q, we have
where N(T,χ) denotes the number of zeros of L(s,χ) with imaginary part between -T and T.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.