In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.
Let be a measure space, and be a Banach space. The Bochner integral of a function is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form
where the are disjoint members of the -algebra the are distinct elements of and χE is the characteristic function of If is finite whenever then the simple function is integrable, and the integral is then defined by
exactly as it is for the ordinary Lebesgue integral.
A measurable function is Bochner integrable if there exists a sequence of integrable simple functions such that
where the integral on the left-hand side is an ordinary Lebesgue integral.
In this case, the Bochner integral is defined by
It can be shown that the sequence is a Cauchy sequence in the Banach space hence the limit on the right exists; furthermore, the limit is independent of the approximating sequence of simple functions These remarks show that the integral is well-defined (i.e independent of any choices). It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space
Elementary properties
Many of the familiar properties of the Lebesgue integral continue to hold for the Bochner integral. Particularly useful is Bochner's criterion for integrability, which states that if is a measure space, then a Bochner-measurable function is Bochner integrable if and only if
Here, a function is called Bochner measurable if it is equal -almost everywhere to a function taking values in a separable subspace of , and such that the inverse image of every open set in belongs to . Equivalently, is the limit -almost everywhere of a sequence of countably-valued simple functions.
Dominated convergence theorem
A version of the dominated convergence theorem also holds for the Bochner integral. Specifically, if is a sequence of measurable functions on a complete measure space tending almost everywhere to a limit function , and if
for almost every , and , then
as and
for all .
If is Bochner integrable, then the inequality
holds for all In particular, the set function
defines a countably-additive -valued vector measure on which is absolutely continuous with respect to .
An important fact about the Bochner integral is that the Radon–Nikodym theorem fails to hold in general, and instead is a property (the Radon–Nikodym property) defining an important class of ″nice″ Banach spaces.
Specifically, if is a measure on then has the Radon–Nikodym property with respect to if, for every countably-additive vector measure on with values in which has bounded variation and is absolutely continuous with respect to there is a -integrable function such that
for every measurable set [2]
The Banach space has the Radon–Nikodym property if has the Radon–Nikodym property with respect to every finite measure.[2] Equivalent formulations include:
- Bounded discrete-time martingales in converge a.s.[3]
- Functions of bounded-variation into are differentiable a.e.[4]
- For every bounded , there exists and such that has arbitrarily small diameter.[3]
It is known that the space has the Radon–Nikodym property, but and the spaces for an open bounded subset of and for an infinite compact space, do not.[5] Spaces with Radon–Nikodym property include separable dual spaces (this is the Dunford–Pettis theorem)[citation needed] and reflexive spaces, which include, in particular, Hilbert spaces.[2]
Diestel, Joseph; Uhl, Jr., John Jerry (1977). Vector Measures. Mathematical Surveys. American Mathematical Society. doi:10.1090/surv/015. (See Theorem II.2.6)
Bourgin 1983, pp. 31, 33. Thm. 2.3.6-7, conditions (1,4,10).
Bourgin 1983, p. 16. "Early workers in this field were concerned with the Banach space property that each X-valued function of bounded variation on [0,1] be differentiable almost surely. It turns out that this property (known as the Gelfand-Fréchet property) is also equivalent to the RNP [Radon-Nikodym Property]."
- Bochner, Salomon (1933), "Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind" (PDF), Fundamenta Mathematicae, 20: 262–276
- Bourgin, Richard D. (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics 993. Berlin: Springer-Verlag. doi:10.1007/BFb0069321. ISBN 3-540-12296-6.
- Cohn, Donald (2013), Measure Theory, Birkhäuser Advanced Texts Basler Lehrbücher, Springer, doi:10.1007/978-1-4614-6956-8, ISBN 978-1-4614-6955-1
- Yosida, Kôsaku (1980), Functional Analysis, Classics in Mathematics, vol. 123, Springer, doi:10.1007/978-3-642-61859-8, ISBN 978-3-540-58654-8
- Diestel, Joseph (1984), Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92, Springer, doi:10.1007/978-1-4612-5200-9, ISBN 978-0-387-90859-5
- Diestel; Uhl (1977), Vector measures, American Mathematical Society, ISBN 978-0-8218-1515-1
- Hille, Einar; Phillips, Ralph (1957), Functional Analysis and Semi-Groups, American Mathematical Society, ISBN 978-0-8218-1031-6
- Lang, Serge (1993), Real and Functional Analysis (3rd ed.), Springer, ISBN 978-0387940014
- Sobolev, V. I. (2001) [1994], "Bochner integral", Encyclopedia of Mathematics, EMS Press
- van Dulst, D. (2001) [1994], "Vector measures", Encyclopedia of Mathematics, EMS Press