A scalar boson is a boson whose spin equals zero.[1] A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin.[2] Scalar bosons are the subset of bosons with zero-valued spin.
The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).
A pseudoscalar boson is a scalar boson that has odd parity, whereas "regular" scalar bosons have even parity.[3]
Examples
Scalar
- The only fundamental scalar boson in the Standard Model of particle physics is the Higgs boson,[1] the existence of which was confirmed on 14 March 2013 at the Large Hadron Collider by CMS and ATLAS.[4] As a result of this confirmation, the 2013 Nobel Prize in physics was awarded to Peter Higgs and François Englert.[5]
- Various known composite particles are scalar bosons, e.g. the alpha particle and scalar mesons.[6]
- The φ4-theory or quartic interaction is a popular "toy model" quantum field theory that uses scalar bosonic fields, used in many introductory quantum textbooks[7][page needed] to introduce basic concepts in field theory.
Pseudoscalar
- There are no fundamental pseudoscalars in the Standard Model, but there are pseudoscalar mesons, like the pion.[8]
See also
References
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.