Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors (GPCRs) that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell (acting as an autocrine signalling molecule) or on nearby cells (acting as a paracrine signalling molecule) to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood (acting as a hormone-like messenger) to trigger systemic or coordinated tissue responses, e.g. prostaglandin (PG) E2 released locally travels to the hypothalamus to trigger a febrile reaction (see Fever § PGE2 release). An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.[1]
The following is a list of human eicosanoid GPCRs grouped according to the type of eicosanoid ligand that each binds:[2][3]
Leukotrienes:
- BLT1 (Leukotriene B4 receptor) – LTB4R; BLT1 is the primary receptor for leukotriene B4. Relative potencies in binding to and stimulating BLT1 are: leukotriene B4>20-hydroxy-leukotriene B4>>12-Hydroxyeicosatetraenoic acid (R isomer) (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=267; also see ALOX12B and 12-Hydroxyeicosatetraenoic acid). BLT1 activation is associated with pro-inflammatory responses in cells, tissues, and animal models.[4]
- BLT2 (Leukotriene B4 receptor 2) – LTB4R2; the receptor for 12-Hydroxyheptadecatrienoic acid, leukotriene B4, and certain other eicosanoids and polyunsaturated fatty acid metabolites (see BLT2). Relative potencies in binding to and stimulating BLT2 are: 12-hydroxyheptadecatrienoic acid (S isomer)>leukotriene B4>12-Hydroxyeicosatetraenoic acid (S isomer)= 12-hydroperoxyeicosatetraenoic acid (S isomer)>15-Hydroxyeicosatetraenoic acid (S isomer])>12-hydroxyeicosatetraenoic acid (R isomer)>20-hydroxy-leukotriene LTB4 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=268). Activation of BLT2 is associated with pro-inflammatory responses by cells and tissues.[4]
- CysLT1 (Cysteinyl leukotriene receptor 1) – CYSLTR1;CYSLTR1 is the receptor for Leukotriene C4 and Leukotriene D4; in binds and responds to leukotriene C4 more strongly than to leukotriene D4. Relative potencies for binding to and activation CYSLTR1 are: leukotriene C4≥ leukotriene D4>>leukotriene E4 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=270). Activation of this receptor is associated with pro-allergic responses in cells, tissues, and animal models.[5]
- CysLT2 (Cysteinyl leukotriene receptor 2) – CYSLTR2; Similar to CYSLTR1, CYSLTR2 is the receptor for Leukotriene C4 and Leukotriene D4; it binds and responds to the latter two ligands equally well. Relative potencies in binding to and stimulating CYSLTR2 are: leukotriene C4≥leukotriene D4>>leukotriene E4 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=270). CYSLT2 Activation of this receptor is associated with pro-allergic responses in cells, tissues, and animal models.[5]
- GPR99/OXGR1 – GPR99; GPR99, also known as the 2-oxoglutarate receptor 1 (OXGR1) or cysteinyl leukotriene receptor E (CysLTE), is a third CysLTR receptor; unlike CYSLTR1 and CYSLTR2, GPR99 binds and responds to Leukotriene E4 much more strongly than to leukotriene C4 or leukotriene D4. GPR99 is also the receptor for alpha-ketoglutarate, binding and responding to this ligand much more weakly than to any of the three cited leukotrienes. Activation of this receptor by LTC4 is associated with pro-allergic responses in cells and an animal model.[4][6] The function of GPR99 as a receptor for leukotriene E4 has been confirmed in a mouse model of allergic rhinitis.[7]
- GPR17 – GPR17; while one study reported that leukotriene C4, leukotriene D4, and leukotriene E4 bind to and activate GPR17 with equal potencies, many subsequent studies did not confirm this. GPR17, which is mainly expressed in the central nervous system, has also been reported to be the receptor for the purines, Adenosine triphosphate and Uridine diphosphate, and certain glycosylated uridine diphosphate purines (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=88) as well as to be involved in animal models of central nervous system Demyelinating reactions.[4][8][9] However, recent reports failed to confirm the latter findings; a consensus of current opinion holds that the true ligand(s) for GPR17 remain to be defined (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=88).
Prostanoids and Prostaglandin receptors
Prostanoids are prostaglandins (PG), thromboxanes (TX), and prostacyclins (PGI). Seven, structurally-related, prostanoid receptors fall into three categories based on the cell activation pathways and activities which they regulate. Relaxant prostanoid receptors (IP, DP1, EP2, and EP4) raise cellular cAMP levels; contractile prostanoid receptors (TP, FP, and EP1) mobilize intracellular calcium; and the inhibitory prostanoid receptor (EP3) lowers cAMP levels. A final prostanoid receptor, DP2, is structurally related to the chemotaxis class of receptors and unlike the other prostanoid receptors mediates eosinophil, basophil, and T helper cell (Th2 type) chemotactic responses. Prostanoids, particularly PGE2 and PGI2, are prominent regulators of inflammation and allergic responses as defined by studies primarily in animal models but also as suggested by studies with human tissues and, in certain cases, human subjects.[17]
- PGD2: DP-(PGD2) (PGD2 receptor)
- PGE2: EP-(PGE2) (PGE2 receptor)
- PGF2α: FP-(PGF2α) (PTGFR) – PTGFR; FP is the receptor for prostaglandin F2 alpha; relative potencies in binding to and stimulating FP are PGF2α>PGD2>PGE2>PGI2=thromboxane A2 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=344). This receptor is the least selective of the prostanoid receptors in that both PGD2 and PGE2 bind to and stimulate it with potencies close to that of PGF2α. FP has two splice variants, FPa and FPb, which differ in the length of their C-terminus tails. PGF2α-induced activation of FP has pro-inflammatory effects as well as roles in ovulation, luteolysis, contraction of uterine smooth muscle, and initiation of parturition. Analogs of PGF2α have been developed for estrus synchronization, abortion in domestic animals, influencing human reproductive function, and reducing intraocular pressure in glaucoma.[18]
- PGI2 (prostacyclin): IP-(PGI2) (PTGIR) – PTGIR; IP is the receptor for prostacyclin I2; relative potencies in binding to and stimulating IP are: PGI2>>PGD2= PGE2=PGF2α>TXA2 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=345). Activation of IP is associated with the promotion of capillary permeability in inflammation and allergic responses as well as partial suppression of experimental arthritis in animal models. IP is expressed in at least three alternatively spliced isoforms which differ in the length of their C-terminus and which also activate different cellular signaling pathways and responses.[17]
- TXA2 (thromboxane): TP-(TXA2) (TBXA2R) – TBXA2R; TP is the receptor for thromboxane A2; relative potencies in binding to and stimulating TP are TXA2=PGH2>>PGD2=PGE2=PGF2α=PGI2 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=346&familyId=58&familyType=GPCR). In addition to PGH2, several isoprostanes have been found to be potent stimulators of and to act in part through TP.[21] The TP receptor is expressed in most human cells types as two alternatively spliced isoforms, TP receptor-α and TP receptor β, which differ in the length of their C-terminus tail; these isoforms communicate with different G proteins, undergo heterodimerization, and thereby result in different changes in intracellular signaling (only the TP receptor α is expressed in mice). Activation of TP by TXA2 or isoprostanes is associated with pro-inflammatory responses in cells, tissues, and animal models.[18][21] TP activation is also associated with the promotion of platelet aggregation and thereby blood clotting and thrombosis.[22]
DuBois RN, Gupta R, Brockman J, Reddy BS, Krakow SL, Lazar MA (1998). "The nuclear eicosanoid receptor, PPAR-γ, is aberrantly expressed in colonic cancers". Carcinogenesis. 19 (1): 49–53. doi:10.1093/carcin/19.1.49. PMID 9472692.
Coleman RA, Smith WL, Narumiya S (1994). "International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes". Pharmacol. Rev. 46 (2): 205–29. PMID 7938166.
Brink C, Dahlén SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T (2003). "International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors". Pharmacol. Rev. 55 (1): 195–227. doi:10.1124/pr.55.1.8. PMID 12615958. S2CID 1584172.
Brink C, Dahlén SE, Drazen J, Evans JF, Hay DW, Rovati GE, Serhan CN, Shimizu T, Yokomizo T (2004). "International Union of Pharmacology XLIV. Nomenclature for the oxoeicosanoid receptor". Pharmacol. Rev. 56 (1): 149–57. doi:10.1124/pr.56.1.4. PMID 15001665. S2CID 7229884.