Pentellated 7-cubes
From Wikipedia, the free encyclopedia
In seven-dimensional geometry, a pentellated 7-cube is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-cube. There are 32 unique pentellations of the 7-cube with permutations of truncations, cantellations, runcinations, and sterications. 16 are more simply constructed relative to the 7-orthoplex.
![]() 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentellated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Penticantellated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Penticantitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentiruncinated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentiruncitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentiruncicantellated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentiruncicantitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentistericated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentisteritruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentistericantellated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentistericantitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentisteriruncinated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentisteriruncitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentisteriruncicantellated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentisteriruncicantitruncated 7-cube ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Pentellated 7-cube
Pentellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Small terated hepteract (acronym: stesa) (Jonathan Bowers)[1]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentitruncated 7-cube
pentitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Teritruncated hepteract (acronym: tetsa) (Jonathan Bowers)[2]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Penticantellated 7-cube
Penticantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Terirhombated hepteract (acronym: tersa) (Jonathan Bowers)[3]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Penticantitruncated 7-cube
penticantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Terigreatorhombated hepteract (acronym: togresa) (Jonathan Bowers)[4]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentiruncinated 7-cube
pentiruncinated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,3,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Teriprismated hepteract (acronym: tapsa) (Jonathan Bowers)[5]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentiruncitruncated 7-cube
pentiruncitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Teriprismatotruncated hepteract (acronym: toptasa) (Jonathan Bowers)[6]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentiruncicantellated 7-cube
pentiruncicantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Teriprismatorhombated hepteract (acronym: topresa) (Jonathan Bowers)[7]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentiruncicantitruncated 7-cube
pentiruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Terigreatoprismated hepteract (acronym: togapsa) (Jonathan Bowers)[8]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | too complex | too complex | |
Dihedral symmetry | [6] | [4] |
Pentistericated 7-cube
pentistericated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Tericellated hepteract (acronym: tacosa) (Jonathan Bowers)[9]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentisteritruncated 7-cube
pentisteritruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Tericellitruncated hepteract (acronym: tecatsa) (Jonathan Bowers)[10]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentistericantellated 7-cube
pentistericantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Tericellirhombated hepteract (acronym: tecresa) (Jonathan Bowers)[11]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentistericantitruncated 7-cube
pentistericantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Tericelligreatorhombated hepteract (acronym: tecgresa) (Jonathan Bowers)[12]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentisteriruncinated 7-cube
Pentisteriruncinated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,3,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bipenticantitruncated 7-cube as t1,2,3,6{4,35}
- Tericelliprismated hepteract (acronym: tecpasa) (Jonathan Bowers)[13]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentisteriruncitruncated 7-cube
pentisteriruncitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 40320 |
Vertices | 10080 |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Tericelliprismatotruncated hepteract (acronym: tecpetsa) (Jonathan Bowers)[14]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentisteriruncicantellated 7-cube
pentisteriruncicantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 40320 |
Vertices | 10080 |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bipentiruncicantitruncated 7-cube as t1,2,3,4,6{4,35}
- Tericelliprismatorhombated hepteract (acronym: tocpresa) (Jonathan Bowers)[15]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Pentisteriruncicantitruncated 7-cube
pentisteriruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4,5{4,35} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Great terated hepteract (acronym: gotesa) (Jonathan Bowers)[16]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | ![]() |
![]() |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | ![]() |
![]() |
![]() |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | ![]() |
![]() | |
Dihedral symmetry | [6] | [4] |
Related polytopes
These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.