Loading AI tools
From Wikipedia, the free encyclopedia
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
Cube-octahedron honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | {(3,4,3,4)} or {(4,3,4,3)} |
Coxeter diagrams | ↔ ↔ |
Cells | {4,3} {3,4} r{4,3} |
Faces | triangle {3} square {4} |
Vertex figure | rhombicuboctahedron |
Coxeter group | [(4,3)[2]] |
Properties | Vertex-transitive, edge-transitive |
A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.
Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.
Wide-angle perspective views:
It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, , with vertex figure (3.4)4.
A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram . This lower symmetry can be extended by restoring one mirror as .
↔ = |
↔ = |
↔ = |
There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group : , , , , .
Rectified cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | r{(4,3,4,3)} |
Coxeter diagrams | |
Cells | r{4,3} rr{3,4} |
Faces | triangle {3} square {4} |
Vertex figure | cuboid |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The rectified cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cuboctahedron and rhombicuboctahedron cells, in a cuboid vertex figure. It has a Coxeter diagram .
Cyclotruncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(4,3,4,3)} |
Coxeter diagrams | |
Cells | t{4,3} {3,4} |
Faces | triangle {3} octagon {8} |
Vertex figure | square antiprism |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cube and octahedron cells, in a square antiprism vertex figure. It has a Coxeter diagram .
It can be seen as somewhat analogous to the trioctagonal tiling, which has truncated square and triangle facets:
Cyclotruncated octahedral-cubic honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(3,4,3,4)} |
Coxeter diagrams | ↔ ↔ |
Cells | {4,3} t{3,4} |
Faces | square {4} hexagon {6} |
Vertex figure | triangular antiprism |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated octahedral-cubic honeycomb is a compact uniform honeycomb, constructed from cube and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram .
It contains an H2 subgroup tetrahexagonal tiling alternating square and hexagonal faces, with Coxeter diagram or half symmetry :
Trigonal trapezohedron ↔ |
Half domain ↔ |
H2 subgroup, rhombic *3232 ↔ |
A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,4,3*)], , represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram . This lower symmetry can be extended by restoring one mirror as .
↔ = |
↔ = |
Truncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | t{(4,3,4,3)} |
Coxeter diagrams | |
Cells | t{3,4} t{4,3} rr{3,4} tr{4,3} |
Faces | triangle {3} square {4} hexagon {6} octagon {8} |
Vertex figure | rectangular pyramid |
Coxeter group | [(4,3)[2]] |
Properties | Vertex-transitive |
The truncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated octahedron, truncated cube, rhombicuboctahedron, and truncated cuboctahedron cells, in a rectangular pyramid vertex figure. It has a Coxeter diagram .
Omnitruncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | tr{(4,3,4,3)} |
Coxeter diagrams | |
Cells | tr{3,4} |
Faces | square {4} hexagon {6} octagon {8} |
Vertex figure | Rhombic disphenoid |
Coxeter group | [2[(4,3)[2]]] or [(2,2)+[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive, cell-transitive |
The omnitruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cuboctahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram with [2,2]+ (order 4) extended symmetry in its rhombic disphenoid vertex figure.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.