Dimethylformamide, DMF is an organic compound with the chemical formula HCON(CH3)2. Its structure is HC(=O)−N(−CH3)2. Commonly abbreviated as DMF (although this initialism is sometimes used for dimethylfuran, or dimethyl fumarate), this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

Quick Facts Names, Identifiers ...
Dimethylformamide
Thumb
Thumb
Ball and stick model of dimethylformamide
Thumb
Spacefill model of dimethylformamide
Names
Preferred IUPAC name
N,N-Dimethylformamide[1]
Other names
Dimethylformamide
N,N-Dimethylmethanamide[2]
DMF
Identifiers
3D model (JSmol)
3DMet
605365
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.617 Edit this at Wikidata
EC Number
  • 200-679-5
KEGG
MeSH Dimethylformamide
RTECS number
  • LQ2100000
UNII
UN number 2265
  • InChI=1S/C3H7NO/c1-4(2)3-5/h3H,1-2H3 checkY
    Key: ZMXDDKWLCZADIW-UHFFFAOYSA-N checkY
  • CN(C)C=O
Properties
C3H7NO
Molar mass 73.095 g·mol−1
Appearance Colourless liquid
Odor Odorless, fishy if impure
Density 0.948 g/mL
Melting point −61 °C (−78 °F; 212 K)
Boiling point 153 °C (307 °F; 426 K)
Miscible
log P −0.829
Vapor pressure 516 Pa
Acidity (pKa) −0.3 (for the conjugate acid) (H2O)[3]
UV-vismax) 270 nm
Absorbance 1.00
1.4305 (at 20 °C)
Viscosity 0.92 mPa·s (at 20 °C)
Structure
3.86 D
Thermochemistry
146.05 J/(K·mol)
−239.4 ± 1.2 kJ/mol
−1.9416 ± 0.0012 MJ/mol
Hazards
GHS labelling:
GHS02: Flammable GHS07: Exclamation mark GHS08: Health hazard
Danger
H226, H312, H319, H332, H360
P280, P305+P351+P338, P308+P313
NFPA 704 (fire diamond)
ThumbHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
2
0
Flash point 58 °C (136 °F; 331 K)
445 °C (833 °F; 718 K)
Explosive limits 2.2–15.2%
30 mg/m3 (TWA)
Lethal dose or concentration (LD, LC):
  • 1.5 g/kg (rabbit, dermal)
  • 2.8 g/kg (rat, oral)
  • 3.7 g/kg (mouse, oral)
  • 3.5 g/kg (rat, oral)
3092 ppm (mouse, 2 h)[4]
5000 ppm (rat, 6 h)[4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 10 ppm (30 mg/m3) [skin][5]
REL (Recommended)
TWA 10 ppm (30 mg/m3) [skin][5]
IDLH (Immediate danger)
500 ppm[5]
Related compounds
Related alkanamides
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Close

Structure and properties

As for most amides, the spectroscopic evidence indicates partial double bond character for the C−N and C−O bonds. Thus, the infrared spectrum shows a C=O stretching frequency at only 1675 cm−1, whereas a ketone would absorb near 1700 cm−1.[6]

DMF is a classic example of a fluxional molecule.[7]

Thumb

The ambient temperature 1H NMR spectrum shows two methyl signals, indicative of hindered rotation about the (O)C−N bond.[6] At temperatures near 100 °C, the 500 MHz NMR spectrum of this compound shows only one signal for the methyl groups.

DMF is miscible with water.[8] The vapour pressure at 20 °C is 3.5 hPa.[9] A Henry's law constant of 7.47 × 10−5 hPa·m3/mol can be deduced from an experimentally determined equilibrium constant at 25 °C.[10] The partition coefficient log POW is measured to −0.85.[11] Since the density of DMF (0.95 g·cm3 at 20 °C[8]) is similar to that of water, significant flotation or stratification in surface waters in case of accidental losses is not expected.

Thumb
Left: two resonance structures of DMF. Right: illustration highlighting delocalization.

Reactions

DMF is hydrolyzed by strong acids and bases, especially at elevated temperatures. With sodium hydroxide, DMF converts to formate and dimethylamine. DMF undergoes decarbonylation near its boiling point to give dimethylamine. Distillation is therefore conducted under reduced pressure at lower temperatures.[12]

In one of its main uses in organic synthesis, DMF is a reagent in the Vilsmeier–Haack reaction, which is used to formylate aromatic compounds.[13][14] The process involves initial conversion of DMF to a chloroiminium ion, [(CH3)2N=CH(Cl)]+, known as a Vilsmeier reagent,[15] which attacks arenes.

Organolithium compounds and Grignard reagents react with DMF to give aldehydes after hydrolysis in a reaction called Bouveault aldehyde synthesis.[16]

Dimethylformamide forms 1:1 adducts with a variety of Lewis acids such as the soft acid I2, and the hard acid phenol. It is classified as a hard Lewis base and its ECW model base parameters are EB = 2.19 and CB = 1.31.[17] Its relative donor strength toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.[18][19]

Production

DMF was first prepared in 1893 by the French chemist Albert Verley (8 January 1867 – 27 November 1959), by distilling a mixture of dimethylamine hydrochloride and potassium formate.[20]

DMF is prepared by combining methyl formate and dimethylamine or by reaction of dimethylamine with carbon monoxide.[21]

Although currently impractical, DMF can be prepared from supercritical carbon dioxide using ruthenium-based catalysts.[22]

Applications

The primary use of DMF is as a solvent with low evaporation rate. DMF is used in the production of acrylic fibers and plastics. It is also used as a solvent in peptide coupling for pharmaceuticals, in the development and production of pesticides, and in the manufacture of adhesives, synthetic leathers, fibers, films, and surface coatings.[8]

Thumb
  • DMF penetrates most plastics and makes them swell. Because of this property DMF is suitable for solid phase peptide synthesis and as a component of paint strippers.
  • DMF is used as a solvent to recover olefins such as 1,3-butadiene via extractive distillation.
  • It is used in the manufacturing of solvent dyes as an important raw material. It is consumed during reaction.
  • Pure acetylene gas cannot be compressed and stored without the danger of explosion. Industrial acetylene is safely compressed in the presence of dimethylformamide, which forms a safe, concentrated solution. The casing is also filled with agamassan, which renders it safe to transport and use.

As a cheap and common reagent, DMF has many uses in a research laboratory.

  • DMF is effective at separating and suspending carbon nanotubes, and is recommended by the NIST for use in near infrared spectroscopy of such.[29]
  • DMF can be utilized as a standard in proton NMR spectroscopy allowing for a quantitative determination of an unknown compound.
  • In the synthesis of organometallic compounds, it is used as a source of carbon monoxide ligands.
  • DMF is a common solvent used in electrospinning.
  • DMF is commonly used in the solvothermal synthesis of metal–organic frameworks.
  • DMF-d7 in the presence of a catalytic amount of potassium tert-butoxide under microwave heating is a reagent for deuteration of polyaromatic hydrocarbons.

Safety

Dimethylformamide vapor exposure has shown reduced alcohol tolerance and skin irritation in some cases.[30]

On 20 June 2018, the Danish Environmental Protective Agency published an article about DMF's use in squishies. The density of the compound in the toy resulted in all squishies being removed from the Danish market. All squishies were recommended to be thrown out as household waste. [31]

Toxicity

The acute LD50 (oral, rats and mice) is 2.2–7.55 g/kg.[8] Hazards of DMF have been examined.[32]

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.