In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by
and converge when Re(s1) + ... + Re(si) > i for all i. Like the Riemann zeta function, the multiple zeta functions can be analytically continued to be meromorphic functions (see, for example, Zhao (1999)). When s1, ..., sk are all positive integers (with s1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums. These values can also be regarded as special values of the multiple polylogarithms.[1][2]
The k in the above definition is named the "depth" of a MZV, and the n = s1 + ... + sk is known as the "weight".[3]
The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions. For example,
Multiple zeta functions arise as special cases of the multiple polylogarithms
which are generalizations of the polylogarithm functions. When all of the are nth roots of unity and the are all nonnegative integers, the values of the multiple polylogarithm are called colored multiple zeta values of level . In particular, when , they are called Euler sums or alternating multiple zeta values, and when they are simply called multiple zeta values. Multiple zeta values are often written
and Euler sums are written
where . Sometimes, authors will write a bar over an corresponding to an equal to , so for example
- .
It was noticed by Kontsevich that it is possible to express colored multiple zeta values (and thus their special cases) as certain multivariable integrals. This result is often stated with the use of a convention for iterated integrals, wherein
Using this convention, the result can be stated as follows:[2]
- where for .
This result is extremely useful due to a well-known result regarding products of iterated integrals, namely that
- where and is the symmetric group on symbols.
To utilize this in the context of multiple zeta values, define , to be the free monoid generated by and to be the free -vector space generated by . can be equipped with the shuffle product, turning it into an algebra. Then, the multiple zeta function can be viewed as an evaluation map, where we identify , , and define
- for any ,
which, by the aforementioned integral identity, makes
Then, the integral identity on products gives[2]
In the particular case of only two parameters we have (with s > 1 and n, m integers):[4]
- where are the generalized harmonic numbers.
Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler:
where Hn are the harmonic numbers.
Special values of double zeta functions, with s > 0 and even, t > 1 and odd, but s+t = 2N+1 (taking if necessary ζ(0) = 0):[4]
Note that if we have irreducibles, i.e. these MZVs cannot be written as function of only.[5]
In the particular case of only three parameters we have (with a > 1 and n, j, i integers):
The above MZVs satisfy the Euler reflection formula:
- for
Using the shuffle relations, it is easy to prove that:[5]
- for
This function can be seen as a generalization of the reflection formulas.
Let , and for a partition of the set , let . Also, given such a and a k-tuple of exponents, define .
The relations between the and are:
and
Theorem 1 (Hoffman)
For any real , .
Proof. Assume the are all distinct. (There is no loss of generality, since we can take limits.) The left-hand side can be written as
. Now thinking on the symmetric
group as acting on k-tuple of positive integers. A given k-tuple has an isotropy group
and an associated partition of : is the set of equivalence classes of the relation
given by iff , and . Now the term occurs on the left-hand side of exactly times. It occurs on the right-hand side in those terms corresponding to partitions that are refinements of : letting denote refinement, occurs times. Thus, the conclusion will follow if
for any k-tuple and associated partition .
To see this, note that counts the permutations having cycle type specified by : since any elements of has a unique cycle type specified by a partition that refines , the result follows.[6]
For , the theorem says
for . This is the main result of.[7]
Having . To state the analog of Theorem 1 for the , we require one bit of notation. For a partition
of , let .
Theorem 2 (Hoffman)
For any real , .
Proof. We follow the same line of argument as in the preceding proof. The left-hand side is now
, and a term occurs on the left-hand since once if all the are distinct, and not at all otherwise. Thus, it suffices to show
(1)
To prove this, note first that the sign of is positive if the permutations of cycle type are even, and negative if they are odd: thus, the left-hand side of (1) is the signed sum of the number of even and odd permutations in the isotropy group . But such an isotropy group has equal numbers of even and odd permutations unless it is trivial, i.e. unless the associated partition is
.[6]
We first state the sum conjecture, which is due to C. Moen.[8]
Sum conjecture (Hoffman). For positive integers k and n,
, where the sum is extended over k-tuples of positive integers with .
Three remarks concerning this conjecture are in order. First, it implies
. Second, in the case it says that , or using the relation between the and and Theorem 1,
This was proved by Euler[9] and has been rediscovered several times, in particular by Williams.[10] Finally, C. Moen[8] has proved the same conjecture for k=3 by lengthy but elementary arguments.
For the duality conjecture, we first define an involution on the set of finite sequences of positive integers whose first element is greater than 1. Let be the set of strictly increasing finite sequences of positive integers, and let :\Im \rightarrow \mathrm {T} }
be the function that sends a sequence in to its sequence of partial sums. If is the set of sequences in whose last element is at most , we have two commuting involutions and on defined by
and
= complement of in arranged in increasing order. The our definition of is for with .
For example,
We shall say the sequences and are dual to each other, and refer to a sequence fixed by as self-dual.[6]
Duality conjecture (Hoffman). If is dual to , then .
This sum conjecture is also known as Sum Theorem, and it may be expressed as follows: the Riemann zeta value of an integer n ≥ 2 is equal to the sum of all the valid (i.e. with s1 > 1) MZVs of the partitions of length k and weight n, with 1 ≤ k ≤ n − 1. In formula:[3]
For example, with length k = 2 and weight n = 7:
The Euler sum with alternations of sign appears in studies of the non-alternating Euler sum.[5]
Notation
- with are the generalized harmonic numbers.
- with
- with
- with
As a variant of the Dirichlet eta function we define
- with
The reflection formula can be generalized as follows:
if we have
Other relations
Using the series definition it is easy to prove:
- with
- with
A further useful relation is:[5]
where and
Note that must be used for all value for which the argument of the factorials is
For all positive integers :
- or more generally:
The Mordell–Tornheim zeta function, introduced by Matsumoto (2003) who was motivated by the papers Mordell (1958) and Tornheim (1950), is defined by
It is a special case of the Shintani zeta function.
- Tornheim, Leonard (1950). "Harmonic double series". American Journal of Mathematics. 72 (2): 303–314. doi:10.2307/2372034. ISSN 0002-9327. JSTOR 2372034. MR 0034860.
- Mordell, Louis J. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. Second Series. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368. ISSN 0024-6107. MR 0100181.
- Apostol, Tom M.; Vu, Thiennu H. (1984), "Dirichlet series related to the Riemann zeta function", Journal of Number Theory, 19 (1): 85–102, doi:10.1016/0022-314X(84)90094-5, ISSN 0022-314X, MR 0751166
- Crandall, Richard E.; Buhler, Joe P. (1994). "On the evaluation of Euler Sums". Experimental Mathematics. 3 (4): 275. doi:10.1080/10586458.1994.10504297. MR 1341720.
- Borwein, Jonathan M.; Girgensohn, Roland (1996). "Evaluation of Triple Euler Sums". Electron. J. Comb. 3 (1): #R23. doi:10.37236/1247. hdl:1959.13/940394. MR 1401442.
- Flajolet, Philippe; Salvy, Bruno (1998). "Euler Sums and contour integral representations". Exp. Math. 7: 15–35. CiteSeerX 10.1.1.37.652. doi:10.1080/10586458.1998.10504356.
- Zhao, Jianqiang (1999). "Analytic continuation of multiple zeta functions". Proceedings of the American Mathematical Society. 128 (5): 1275–1283. doi:10.1090/S0002-9939-99-05398-8. MR 1670846.
- Matsumoto, Kohji (2003), "On Mordell–Tornheim and other multiple zeta-functions", Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Bonn: Univ. Bonn, MR 2075634
- Espinosa, Olivier; Moll, Victor Hugo (2008). "The evaluation of Tornheim double sums". arXiv:math/0505647.
- Espinosa, Olivier; Moll, Victor Hugo (2010). "The evaluation of Tornheim double sums II". Ramanujan J. 22: 55–99. arXiv:0811.0557. doi:10.1007/s11139-009-9181-1. MR 2610609. S2CID 17055581.
- Borwein, J.M.; Chan, O-Y. (2010). "Duality in tails of multiple zeta values". Int. J. Number Theory. 6 (3): 501–514. CiteSeerX 10.1.1.157.9158. doi:10.1142/S1793042110003058. MR 2652893.
- Basu, Ankur (2011). "On the evaluation of Tornheim sums and allied double sums". Ramanujan J. 26 (2): 193–207. doi:10.1007/s11139-011-9302-5. MR 2853480. S2CID 120229489.
Zhao, Jianqiang (2010). "Standard relations of multiple polylogarithm values at roots of unity". Documenta Mathematica. 15: 1–34. arXiv:0707.1459.
Zhao, Jianqiang (2016). Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. Series on Number Theory and its Applications. Vol. 12. World Scientific Publishing. doi:10.1142/9634. ISBN 978-981-4689-39-7.
Borwein, David; Borwein, Jonathan; Bradley, David (September 23, 2004). "Parametric Euler Sum Identities" (PDF). CARMA, AMSI Honours Course. The University of Newcastle. Retrieved June 3, 2012.
Broadhurst, D. J. (1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arXiv:hep-th/9604128.
Moen, C. "Sums of Simple Series". Preprint.
Euler, L. (1775). "Meditationes circa singulare serierum genus". Novi Comm. Acad. Sci. Petropol. 15 (20): 140–186.
Williams, G. T. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368.