The Møller scattering can be calculated from the QED point-of-view, at the tree-level, with the help of the two diagrams shown on this page. These two diagrams are contributing at leading order from the QED point-of-view. If we are taking in account the weak force, which is unified with the electromagnetic force at high energy, then we have to add two tree-level diagram for the exchange of a
boson. Here we will focus our attention on a strict tree-level QED computation of the cross section, which is rather instructive but maybe not the most accurate description from a physical point-of-view.
Before the derivation, we write the 4-momenta as (
and
for incoming electrons,
and
for outgoing electrons, and
):


The Mandelstam variables are:



These Mandelstam variables satisfy the identity:
.
According to the two diagrams on this page, the matrix element of t-channel is

the matrix element of u-channel is

So the sum is
![{\displaystyle {\begin{aligned}i{\mathcal {M}}&=i({\mathcal {M}}_{t}-{\mathcal {M}}_{u})\\&=-i(-ie)^{2}\left[{\frac {1}{t}}{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{1}){\bar {u}}(p_{4})\gamma _{\mu }u(p_{2})-{\frac {1}{u}}{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{2}){\bar {u}}(p_{4})\gamma _{\mu }u(p_{1})\right].\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/e63d0161d17b50e252aa3df056c8eb19104306ee)
Therefore,
![{\displaystyle {\begin{aligned}|{\mathcal {M}}|^{2}&=e^{4}{\biggl \{}{\frac {1}{t^{2}}}[{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{1})][{\bar {u}}(p_{1})\gamma ^{\nu }u(p_{3})][{\bar {u}}(p_{4})\gamma _{\mu }u(p_{2})][{\bar {u}}(p_{2})\gamma _{\nu }u(p_{4})]\\&\qquad +{\frac {1}{u^{2}}}[{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{2})][{\bar {u}}(p_{2})\gamma ^{\nu }u(p_{3})][{\bar {u}}(p_{4})\gamma _{\mu }u(p_{1})][{\bar {u}}(p_{1})\gamma _{\nu }u(p_{4})]\\&\qquad -{\frac {1}{tu}}[{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{1})][{\bar {u}}(p_{2})\gamma ^{\nu }u(p_{3})][{\bar {u}}(p_{4})\gamma _{\mu }u(p_{2})][{\bar {u}}(p_{1})\gamma _{\nu }u(p_{4})]\\&\qquad -{\frac {1}{tu}}[{\bar {u}}(p_{3})\gamma ^{\mu }u(p_{2})][{\bar {u}}(p_{1})\gamma ^{\nu }u(p_{3})][{\bar {u}}(p_{4})\gamma _{\mu }u(p_{1})][{\bar {u}}(p_{2})\gamma _{\nu }u(p_{4})]{\biggr \}}.\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/d28bc050a1836159dbe610b9b30f7e6d19953e81)
To calculate the unpolarized cross section, we average over initial spins and sum over final spins, with the factor 1/4 (1/2 for each incoming electron):
![{\displaystyle {\begin{aligned}{\frac {1}{4}}\sum _{\text{spins}}|{\mathcal {M}}|^{2}&={\frac {e^{4}}{4}}{\biggl \{}{\frac {1}{t^{2}}}\mathrm {Tr} [\gamma ^{\mu }(\not p_{1}+m)\gamma ^{\nu }(\not p_{3}+m)]\mathrm {Tr} [\gamma _{\mu }(\not p_{2}+m)\gamma _{\nu }(\not p_{4}+m)]\\&~~+{\frac {1}{u^{2}}}\mathrm {Tr} [\gamma ^{\mu }(\not p_{2}+m)\gamma ^{\nu }(\not p_{3}+m)]\mathrm {Tr} [\gamma _{\mu }(\not p_{1}+m)\gamma _{\nu }(\not p_{4}+m)]\\&~~-{\frac {2}{tu}}\mathrm {Tr} [(\not p_{3}+m)\gamma ^{\mu }(\not p_{1}+m)\gamma ^{\nu }(\not p_{4}+m)\gamma _{\mu }(\not p_{2}+m)\gamma _{\nu }]{\biggl \}}\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/acfef0c8d2957ded5e81c926b91da7e4b974d8cd)
where we have used the relation
. We would next calculate the traces.
The first term in the braces is
![{\displaystyle {\begin{aligned}&~~{\frac {1}{t^{2}}}\mathrm {Tr} [\gamma ^{\mu }(\not p_{1}+m)\gamma ^{\nu }(\not p_{3}+m)]\mathrm {Tr} [\gamma _{\mu }(\not p_{2}+m)\gamma _{\nu }(\not p_{4}+m)]\\&={\frac {16}{t^{2}}}(p_{1}^{\mu }p_{3}^{\nu }+p_{3}^{\mu }p_{1}^{\nu }+(-p_{13}+m^{2})g^{\mu \nu })(p_{2\mu }p_{4\nu }+p_{4\mu }p_{2\nu }+(-p_{24}+m^{2})g_{\mu \nu })\\&={\frac {32}{t^{2}}}{\big (}p_{12}p_{34}+p_{23}p_{14}-m^{2}p_{13}-m^{2}p_{24}+2m^{4}{\big )}\\&={\frac {32}{t^{2}}}{\big (}p_{12}^{2}+p_{14}^{2}+2m^{2}(p_{14}-p_{12}){\big )}\\&={\frac {8}{t^{2}}}(s^{2}+u^{2}-8m^{2}(s+u)+24m^{4})\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/403f778ca81bf10a3f6eda6d3dabf320e1b39bf9)
Here
, and we have used the
-matrix identity
![{\displaystyle \mathrm {Tr} [\gamma ^{\mu }\gamma ^{\nu }\gamma ^{\rho }\gamma ^{\sigma }]=4\left(\eta ^{\mu \nu }\eta ^{\rho \sigma }-\eta ^{\mu \rho }\eta ^{\nu \sigma }+\eta ^{\mu \sigma }\eta ^{\nu \rho }\right)}](//wikimedia.org/api/rest_v1/media/math/render/svg/f3b28a4641412da813dcad1496b17ec7dbfda578)
and that trace of any product of an odd number of
is zero.
Similarly, the second term is
![{\displaystyle {\begin{aligned}&~~{\frac {1}{u^{2}}}\mathrm {Tr} [\gamma ^{\mu }(\not p_{2}+m)\gamma ^{\nu }(\not p_{3}+m)]\mathrm {Tr} [\gamma _{\mu }(\not p_{1}+m)\gamma _{\nu }(\not p_{4}+m)]\\&={\frac {32}{u^{2}}}{\big (}p_{12}p_{34}+p_{13}p_{24}-m^{2}p_{23}-m^{2}p_{14}+2m^{4}{\big )}\\&={\frac {8}{u^{2}}}(s^{2}+t^{2}-8m^{2}(s+t)+24m^{4})\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/03fd55805abfc4158f5e99c7028f626005c32001)
Using the
-matrix identities
![{\displaystyle \mathrm {Tr} [\gamma ^{\mu }\gamma ^{\nu }\gamma _{\mu }\gamma _{\nu }]=-32,}](//wikimedia.org/api/rest_v1/media/math/render/svg/b25e136cd6051b531cad9d62e0b81d06937ab0c0)
![{\displaystyle \mathrm {Tr} [\gamma ^{\rho }\gamma ^{\mu }\gamma ^{\sigma }\gamma ^{\nu }\gamma _{\mu }\gamma _{\nu }]=\mathrm {Tr} [\gamma ^{\rho }\gamma ^{\mu }\gamma ^{\nu }\gamma ^{\sigma }\gamma _{\mu }\gamma _{\nu }]=16g^{\rho \sigma },}](//wikimedia.org/api/rest_v1/media/math/render/svg/b2d00200a2ff4c87111aa66e189f3987088fe4eb)
![{\displaystyle \mathrm {Tr} [\gamma ^{\rho }\gamma ^{\mu }\gamma ^{\sigma }\gamma ^{\nu }\gamma ^{\lambda }\gamma _{\mu }\gamma ^{\tau }\gamma _{\nu }]=-32g^{\rho \lambda }g^{\sigma \tau },}](//wikimedia.org/api/rest_v1/media/math/render/svg/90aad71182cbe0b134c7891342ef7a23288a4e17)
and the identity of Mandelstam variables:
, we get the third term
![{\displaystyle {\begin{aligned}&-{\frac {2}{tu}}\mathrm {Tr} \left[(\not p_{3}+m)\gamma ^{\mu }(\not p_{1}+m)\gamma ^{\nu }(\not p_{4}+m)\gamma _{\mu }(\not p_{2}+m)\gamma _{\nu }\right]\\={}&-{\frac {32}{tu}}\left(-2p_{12}p_{34}+2m^{2}(p_{12}+p_{13}+p_{14})-2m^{4}\right)\\={}&{\frac {16}{tu}}\left(s^{2}-8m^{2}s+12m^{4}\right)\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/1c1b98f3e13bdaaf64997ad274d0e5292bffb242)
Therefore,

Substitute in the momentums we have set here, which are



Finally we get the unpolarized cross section
![{\displaystyle {\begin{aligned}{\frac {d\sigma }{d\Omega }}&={\frac {1}{64\pi ^{2}E_{CM}^{2}}}{\frac {|{\vec {p}}_{f}|}{|{\vec {p}}_{i}|}}{\overline {|{\mathcal {M}}|^{2}}}\\&={\frac {\alpha ^{2}}{2E_{CM}^{2}}}{\Big \{}{\frac {1}{t^{2}}}{\big (}s^{2}+u^{2}-8m^{2}(s+u)+24m^{4}{\big )}\\&~~+{\frac {1}{u^{2}}}{\big (}s^{2}+t^{2}-8m^{2}(s+t)+24m^{4}{\big )}\\&~~+{\frac {2}{tu}}{\big (}s^{2}-8m^{2}s+12m^{4}{\big )}{\Big \}}\\&={\frac {\alpha ^{2}}{E_{CM}^{2}p^{4}\sin ^{4}\theta }}{\Big [}4(m^{2}+2p^{2})^{2}+{\big (}4p^{4}-3(m^{2}+2p^{2})^{2}{\big )}\sin ^{2}\theta +p^{4}\sin ^{4}\theta {\Big ]}.\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/df816c0cdaad9375f015baf3a1c21f4543bc21fd)
with
and
.
In the nonrelativistic limit,
,

In the ultrarelativistic limit,
,
