Loading AI tools
From Wikipedia, the free encyclopedia
Mixed-precision arithmetic is a form of floating-point arithmetic that uses numbers with varying widths in a single operation.
A common usage of mixed-precision arithmetic is for operating on inaccurate numbers with a small width and expanding them to a larger, more accurate representation. For example, two half-precision or bfloat16 (16-bit) floating-point numbers may be multiplied together to result in a more accurate single-precision (32-bit) float.[1] In this way, mixed-precision arithmetic approximates arbitrary-precision arithmetic, albeit with a low number of possible precisions.
Iterative algorithms (like gradient descent) are good candidates for mixed-precision arithmetic. In an iterative algorithm like square root, a coarse integral guess can be made and refined over many iterations until the error in precision makes it such that the smallest addition or subtraction to the guess is still too coarse to be an acceptable answer. When this happens, the precision can be increased to something more precise, which allows for smaller increments to be used for the approximation.
Supercomputers such as Summit utilize mixed-precision arithmetic to be more efficient with regards to memory and processing time, as well as power consumption.[1][2][3]
A floating-point number is typically packed into a single bit-string, as the sign bit, the exponent field, and the significand or mantissa, from left to right. As an example, a IEEE 754 standard 32-bit float ("FP32", "float32", or "binary32") is packed as follows:
The IEEE 754 binary floats are:
Type | Bits | Exponent
bias |
Bits
precision |
Number of
decimal digits | ||||
---|---|---|---|---|---|---|---|---|
Sign | Exponent | Significand | Total | |||||
Half (IEEE 754-2008) | 1 | 5 | 10 | 16 | 15 | 11 | ~3.3 | |
Single | 1 | 8 | 23 | 32 | 127 | 24 | ~7.2 | |
Double | 1 | 11 | 52 | 64 | 1023 | 53 | ~15.9 | |
x86 extended precision | 1 | 15 | 64 | 80 | 16383 | 64 | ~19.2 | |
Quad | 1 | 15 | 112 | 128 | 16383 | 113 | ~34.0 |
Mixed-precision arithmetic is used in the field of machine learning, since gradient descent algorithms can use coarse and efficient half-precision floats for certain tasks, but can be more accurate if they use more precise but slower single-precision floats. Some platforms, including Nvidia, Intel, and AMD CPUs and GPUs, provide mixed-precision arithmetic for this purpose, using coarse floats when possible, but expanding them to higher precision when necessary.[1][2][4][5]
PyTorch implements automatic mixed-precision (AMP), which performs autocasting, gradient scaling, and loss scaling.[6][7]
PyTorch AMP uses exponential backoff to automatically adjust the scale factor for loss scaling. That is, it periodically increase the scale factor. Whenever the gradients contain a NaN (indicating overflow), the weight update is skipped, and the scale factor is decreased.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.