Loading AI tools
Type of stonemasonry used in construction From Wikipedia, the free encyclopedia
Massive-precut stone is a modern stonemasonry method of building with load-bearing stone.[1] Precut stone is a DFMA construction method that uses large machine-cut dimension stone blocks with precisely defined dimensions to rapidly assemble buildings in which stone is used as a major or the sole load-bearing material.
A key technique of massive-precut stone ("MP stone") is to specify precut stone to precise dimensions that match the architect's plan for rapid construction, typically using a crane.[1] The blocks may be numbered so that the masons can follow the plan procedurally. The use of massive stone blocks has several benefits, listed below.
Massive-precut stone construction was originally developed by Fernand Pouillon in postwar period who referred to the method as "pierre de taille" or "pré-taille" stone. It became possible through innovations by Pouillon and Paul Marcerou, a masonry engineer at a quarry in Fontvieille,[2] to adapt high-precision saws from the timber industry to quarrying and stone sawing.[3]
Massive-precut stone is also known as "prefabricated stone", "pre-sized stone", "megalithic" construction, "massive stone", or simply "mass stone". However, these terms have various namespace conflicts with other stonemasonry techniques like synthetic stone, cosmetic (non-loadbearing) precut stone, and/or older methods of massive handworked stonemasonry. MP stone has a close affiliation with tensioned stone as compatible methods of modern load-bearing stonemasonry.[4] Similarly, massive-precut stone (aka mass stone) has a connection to mass timber as allied low-carbon construction methods using traditional structural materials in a new context.
Since 1948, MP stone buildings have been constructed in France, Algeria, Iran,[5] Switzerland, Palestine, the United Kingdom, Spain, and India. The re-adoption of MP stone inspired architecture critic Rowan Moore to speculate that "It's conceivable, indeed, that the era of concrete will prove only an interlude in the far longer history of stone."[6]
MP stone is defined by five design attributes. These differentiate MP stone from both traditional stonemasonry and modern non-load-bearing and/or non-DFMA stone methods.
"Exactly how Pouillon brought the 2,635 apartments of the 1959 Résidence du Parc in Meudon-la-Forêt[8] (1959) online in record time and at less-than-market prices remains a mystery no-one seems to want to see solved." – Graham McKay.[7]
There are three implementations of massive-precut stone.
MP stone is typically used in conjunction with other materials, notably for floors, as unreinforced stone is unsuitable for tensile spans. It has most often been used together with reinforced concrete floors, but plans are in place to use it with cross-laminated timber floors, and post-tensioned stone floors. Reinforcing massive precut stone with post-tensioning reinforcement would make it strong enough to substitute for reinforced concrete in a wide range of applications.
In 2024, UK industry group the Stone Collective[11] was formed to promote construction with stone, and advance education in this area.[12][13]
MP stone construction has five key advantages over non-massive stone and brick masonry, concrete, wood, and other conventional construction methods.
"Imagine: we currently crush, burn and chemically mix limestone to make cement for concrete that then has 40 per cent of the strength of its original strength, needing steel to reinforce it. Why do we use concrete then?"[20]
"With regard to the current Algerian seismic design regulation, the results obtained in terms of time period, frequency, storey drifts and displacements showed that the… [Diar Es Saada massive precut stone]… tower can be considered as an earthquake-resistant building fulfilling the required structural safety conditions."[22]
MP stone has been ignored and/or resisted by mainstream architects, engineers, and developers, for reasons including the following.
The history of construction with stone goes back thousands of years, to before the age of the pyramids, but these constructions used muscle energy to cut stones, typically with considerable fixer stonemasonry on site. In modern architecture, stone had been used in a number of contexts, even prior to the development of the massive-precut method.
In the 19th century, architect Louis Sullivan used load-bearing stone walls in the Auditorium Building (1889) in Chicago. [28] In the 20th century, most modern architects pivoted to steel and concrete construction. Nevertheless, even modernists used load-bearing stone in some projects, e.g. Le Corbusier included stone walls in Villa de Mandrot (1931), Maison Henfel (1934), and Villa Le Sextant (1935).[29] Some of the Prairie School architects, including Frank Lloyd Wright, used stone in houses. Wright houses that use stone include Fallingwater (1935), the Mrs. Clinton Walker House,[30] and his own houses Taliesin (1925) and Taliesin West (1937). Another Prairie-School architect, Walter Burley Griffin, used stone in the Joshua Melson house (1912) [31] and site-quarried, load-bearing sandstone in his Castlecrag suburban development (from 1922), a technique that aimed to enable the mass production of housing from the local Sydney bedrock.
After these efforts to include stone into modern construction, the large-scale use of massive precut stone was pioneered by Fernand Pouillon (1912-1986), a French architect who was active in post-war reconstruction. Starting in the 1940s, his innovative approach to stone led to the development of numerous noteworthy projects, with a particular focus on apartment complexes. Throughout his long career, Pouillon played a crucial role in the development and popularization of massive precut stone construction techniques. His pioneering work laid the foundation for subsequent architects to build upon and innovate, leading to the resurgence and expansion of this construction method in modern architecture.
Fernand Pouillon, French Wikipedia
In the post-war era, Pouillon—first in Auguste Perret's firm and then through his own office—designed and completed MP-stone buildings that held tens of thousands of apartments, in France and Algeria. In post-war France, there was a huge demand for new urban housing, but cement and steel were relatively expensive; machine-cut limestone represented a plentiful, economical building material.
"This new technique consisted of adapting machines used to form steel and wood to cut stone. As a result of this technique it became possible to mine and shape the blocks of the Fontvielle quarry very finely, which allowed for a particular building technique, named ‘ready-made’ or ‘prefabricated’ stone by Pouillon."[34]
"The project followed several key principles: North-south oriented housing for proper ventilation during summer; Use of 40 cm thick structural massive stone for better high thermal inertia and summer comfort; Unprocessed and unpainted materials: solid wood window frames and shutters left untreated to age naturally; walls without plaster. Constructed with a social housing budget of €1,150/sqm (m2), this project demonstrated the modernity of stone construction, perfectly suited to today's housing demands. Massive stone allows for quick, relatively dry construction with minimal site disturbance and reduced assembly time. The stone's properties of thermal inertia, phase shift, and hygrothermal regulation make it a healthy and durable material. Recycling is limited to deconstruction and reuse of stones in their original form."[40]
The most recent MP stone housing typically uses a combination of materials, usually concrete plinths and internal structure, with load-bearing stone facades. Following the work by Perraudin and Barrault Presacco, a range of French architects adopted this method and applied it to projects across France.[57][40]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.