Loading AI tools
Invariant of homeomorphisms of the circle From Wikipedia, the free encyclopedia
In mathematics, the rotation number is an invariant of homeomorphisms of the circle.
It was first defined by Henri Poincaré in 1885, in relation to the precession of the perihelion of a planetary orbit. Poincaré later proved a theorem characterizing the existence of periodic orbits in terms of rationality of the rotation number.
Suppose that is an orientation-preserving homeomorphism of the circle Then f may be lifted to a homeomorphism of the real line, satisfying
for every real number x and every integer m.
The rotation number of f is defined in terms of the iterates of F:
Henri Poincaré proved that the limit exists and is independent of the choice of the starting point x. The lift F is unique modulo integers, therefore the rotation number is a well-defined element of Intuitively, it measures the average rotation angle along the orbits of f.
If is a rotation by (where ), then
and its rotation number is (cf. irrational rotation).
The rotation number is invariant under topological conjugacy, and even monotone topological semiconjugacy: if f and g are two homeomorphisms of the circle and
for a monotone continuous map h of the circle into itself (not necessarily homeomorphic) then f and g have the same rotation numbers. It was used by Poincaré and Arnaud Denjoy for topological classification of homeomorphisms of the circle. There are two distinct possibilities.
The rotation number is continuous when viewed as a map from the group of homeomorphisms (with C0 topology) of the circle into the circle.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.