M/D/c queue

From Wikipedia, the free encyclopedia

In queueing theory, a discipline within the mathematical theory of probability, an M/D/c queue represents the queue length in a system having c servers, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation.[1] Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory.[2][3] The model is an extension of the M/D/1 queue which has only a single server.

Model definition

An M/D/c queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers in the system, including any currently in service.

  • Arrivals occur at rate λ according to a Poisson process and move the process from state i to i + 1.
  • Service times are deterministic time D (serving at rate μ = 1/D).
  • c servers serve customers from the front of the queue, according to a first-come, first-served discipline. When the service is complete the customer leaves the queue and the number of customers in the system reduces by one.
  • The buffer is of infinite size, so there is no limit on the number of customers it can contain.

Waiting time distribution

Summarize
Perspective

Erlang showed that when ρ = (λ D)/c < 1, the waiting time distribution has distribution F(y) given by[4]

Crommelin showed that, writing Pn for the stationary probability of a system with n or fewer customers, [5]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.