
The last expression is the logarithmic mean.

(the Gaussian integral)




(see Integral of a Gaussian function)






(the operator !!}
is the Double factorial)

![{\displaystyle \int _{0}^{1}x^{n}e^{-ax}\,dx={\frac {n!}{a^{n+1}}}\left[1-e^{-a}\sum _{i=0}^{n}{\frac {a^{i}}{i!}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/92482c2e5d7502755c6da9b6f088ff00721580e1)
![{\displaystyle \int _{0}^{b}x^{n}e^{-ax}\,dx={\frac {n!}{a^{n+1}}}\left[1-e^{-ab}\sum _{i=0}^{n}{\frac {(ab)^{i}}{i!}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/f17026bf5a6616142c6b1a8f0392f3ceb373cbbd)











(appears in several models of extended superstring theory in higher dimensions)
(I0 is the modified Bessel function of the first kind)


where
is the Polylogarithm.


where
is the Euler–Mascheroni constant which equals the value of a number of definite integrals.
Finally, a well known result,
where
is the Kronecker delta.