Loading AI tools
Probability distribution From Wikipedia, the free encyclopedia
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time[citation needed]. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.
A random variable has a distribution if its probability density function is
where is a location parameter, and , which is sometimes referred to as the "diversity", is a scale parameter. If and , the positive half-line is exactly an exponential distribution scaled by 1/2.[2]
The probability density function of the Laplace distribution is also reminiscent of the normal distribution; however, whereas the normal distribution is expressed in terms of the squared difference from the mean , the Laplace density is expressed in terms of the absolute difference from the mean. Consequently, the Laplace distribution has fatter tails than the normal distribution. It is a special case of the generalized normal distribution and the hyperbolic distribution. Continuous symmetric distributions that have exponential tails, like the Laplace distribution, but which have probability density functions that are differentiable at the mode include the logistic distribution, hyperbolic secant distribution, and the Champernowne distribution.
The Laplace distribution is easy to integrate (if one distinguishes two symmetric cases) due to the use of the absolute value function. Its cumulative distribution function is as follows:
The inverse cumulative distribution function is given by
Let be independent laplace random variables: and , and we want to compute .
The probability of can be reduced (using the properties below) to , where . This probability is equal to
When , both expressions are replaced by their limit as :
To compute the case for , note that
since when .
A Laplace random variable can be represented as the difference of two independent and identically distributed (iid) exponential random variables.[3] One way to show this is by using the characteristic function approach. For any set of independent continuous random variables, for any linear combination of those variables, its characteristic function (which uniquely determines the distribution) can be acquired by multiplying the corresponding characteristic functions.
Consider two i.i.d random variables . The characteristic functions for are
respectively. On multiplying these characteristic functions (equivalent to the characteristic function of the sum of the random variables ), the result is
This is the same as the characteristic function for , which is
Sargan distributions are a system of distributions of which the Laplace distribution is a core member. A th order Sargan distribution has density[4][5]
for parameters . The Laplace distribution results for .
Given independent and identically distributed samples , the maximum likelihood (MLE) estimator of is the sample median,[6]
The MLE estimator of is the mean absolute deviation from the median,[citation needed]
revealing a link between the Laplace distribution and least absolute deviations. A correction for small samples can be applied as follows:
The Laplacian distribution has been used in speech recognition to model priors on DFT coefficients [7] and in JPEG image compression to model AC coefficients [8] generated by a DCT.
Given a random variable drawn from the uniform distribution in the interval , the random variable
has a Laplace distribution with parameters and . This follows from the inverse cumulative distribution function given above.
A variate can also be generated as the difference of two i.i.d. random variables. Equivalently, can also be generated as the logarithm of the ratio of two i.i.d. uniform random variables.
This distribution is often referred to as "Laplace's first law of errors". He published it in 1774, modeling the frequency of an error as an exponential function of its magnitude once its sign was disregarded. Laplace would later replace this model with his "second law of errors", based on the normal distribution, after the discovery of the central limit theorem.[14][15]
Keynes published a paper in 1911 based on his earlier thesis wherein he showed that the Laplace distribution minimised the absolute deviation from the median.[16]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.