Kummer's congruence
Result in number theory showing congruences involving Bernoulli numbers From Wikipedia, the free encyclopedia
In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer (1851).
Kubota & Leopoldt (1964) used Kummer's congruences to define the p-adic zeta function.
Statement
Summarize
Perspective
The simplest form of Kummer's congruence states that
where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.
More generally if h and k are positive even integers not divisible by p − 1, then
whenever
where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above. The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.
See also
- Von Staudt–Clausen theorem, another congruence involving Bernoulli numbers
- Bernoulli number § The Kummer theorems
References
- Koblitz, Neal (1984), p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol. 58, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96017-3, MR 0754003
- Kubota, Tomio; Leopoldt, Heinrich-Wolfgang (1964), "Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen", Journal für die reine und angewandte Mathematik, 214/215: 328–339, doi:10.1515/crll.1964.214-215.328, ISSN 0075-4102, MR 0163900
- Kummer, Ernst Eduard (1851), "Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen", Journal für die Reine und Angewandte Mathematik, 41: 368–372, doi:10.1515/crll.1851.41.368, ISSN 0075-4102, ERAM 041.1136cj
Wikiwand - on
Seamless Wikipedia browsing. On steroids.