Loading AI tools
Result in number theory showing congruences involving Bernoulli numbers From Wikipedia, the free encyclopedia
In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer (1851).
Kubota & Leopoldt (1964) used Kummer's congruences to define the p-adic zeta function.
The simplest form of Kummer's congruence states that
where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.
More generally if h and k are positive even integers not divisible by p − 1, then
whenever
where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above. The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.