Loading AI tools
Type of solid state switch From Wikipedia, the free encyclopedia
An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It consists of four alternating layers (NPNP)[1][2][3][4][5] that are controlled by a metal–oxide–semiconductor (MOS) gate structure.
Working principle | Semiconductor |
---|---|
Invented | 1959 |
Electronic symbol | |
IGBT schematic symbol |
Although the structure of the IGBT is topologically similar to a thyristor with a "MOS" gate (MOS-gate thyristor), the thyristor action is completely suppressed, and only the transistor action is permitted in the entire device operation range. It is used in switching power supplies in high-power applications: variable-frequency drives (VFDs) for motor control in electric cars, trains, variable-speed refrigerators, and air conditioners, as well as lamp ballasts, arc-welding machines, photovoltaic and hybrid inverters, uninterruptible power supply systems (UPS), and induction stoves.
Since it is designed to turn on and off rapidly, the IGBT can synthesize complex waveforms with pulse-width modulation and low-pass filters, thus it is also used in switching amplifiers in sound systems and industrial control systems. In switching applications modern devices feature pulse repetition rates well into the ultrasonic-range frequencies, which are at least ten times higher than audio frequencies handled by the device when used as an analog audio amplifier. As of 2010[update], the IGBT was the second most widely used power transistor, after the power MOSFET.[citation needed]
Device characteristic | Power BJT | Power MOSFET | IGBT |
---|---|---|---|
Voltage rating | High <1 kV | High <1 kV | Very high >1 kV |
Current rating | High <500 A | Low <200 A | High >500 A |
Input drive | Current ratio hFE ~ 20–200 |
Voltage VGS ~ 3–10 V |
Voltage VGE ~ 4–8 V |
Input impedance | Low | High | High |
Output impedance | Low | Medium | Low |
Switching speed | Slow (μs) | Fast (ns) | Medium |
Cost | Low | Medium | High |
An IGBT cell is constructed similarly to an n-channel vertical-construction power MOSFET, except the n+ drain is replaced with a p+ collector layer, thus forming a vertical PNP bipolar junction transistor. This additional p+ region creates a cascade connection of a PNP bipolar junction transistor with the surface n-channel MOSFET. The whole structure comprises a four layered NPNP.[1][2][3][4][5]
Aspect | Thyristor | IGBT |
---|---|---|
Definition | A four-layer semiconductor device with a P-N-P-N structure | An insulated-gate bipolar transistor combining features from bipolar transistors and MOSFETs |
Terminals | Anode, cathode, gate | Emitter, collector, gate |
Layers | Four layers | Three layers |
Junction | PNPN structure | NPN(P) structure |
Modes of operation | Reverse blocking, forward blocking, forward conducting | On-state, off-state |
Design structure | Coupled transistors (PNP and NPN) | Combined bipolar and MOSFET features |
Carrier source | Two sources of carriers | One source of carriers |
Turn-on voltage | N/A | Low gate voltage required |
Turn off loss | Higher | Lower |
Plasma density | Higher | Lower |
Operating frequency range | Suitable for line frequency, typically lower | Suitable for high frequencies, typically higher |
Die size and paralleling requirements | Larger die size, can be manufactured as monolithic devices up to 6" (15 cm) in diameter | Smaller die size, often paralleled in a package |
Power range | Suitable for high-power applications | Suitable for medium-power applications |
Control requirements | Requires gate current | Requires continuous gate voltage |
Value for money | Cost-effective | Relatively higher cost |
Control method | Pulse triggering | Gate voltage control |
Switching speed | Slower | Faster |
Current switching capability | High | Moderate |
Control current | High current drive | Low current drive |
Voltage capability | High voltage handling | Lower voltage handling |
Power loss | Higher power dissipation | Lower power dissipation |
Application | High voltage, robustness | High-speed switching, efficiency |
The bipolar point-contact transistor was invented in December 1947[9] at the Bell Telephone Laboratories by John Bardeen and Walter Brattain under the direction of William Shockley. The junction version known as the bipolar junction transistor (BJT), invented by Shockley in 1948.[10] Later the similar thyristor was proposed by William Shockley in 1950 and developed in 1956 by power engineers at General Electric (GE). The metal–oxide–semiconductor field-effect transistor (MOSFET) was also invented at Bell Labs.[8][11][12] In 1957 Frosch and Derick published their work on building the first silicon dioxide transistors, including a NPNP transistor, the same structure as the IGBT.[13] The basic IGBT mode of operation, where a pnp transistor is driven by a MOSFET, was first proposed by K. Yamagami and Y. Akagiri of Mitsubishi Electric in the Japanese patent S47-21739, which was filed in 1968.[14]
In 1978 J. D. Plummer and B. Scharf patented a NPNP transistor device combining MOS and bipolar capabilities for power control and switching.[15][16] The development of IGBT was characterized by the efforts to completely suppress the thyristor operation or the latch-up in the four-layer device because the latch-up caused the fatal device failure. IGBTs had, thus, been established when the complete suppression of the latch-up of the parasitic thyristor was achieved. Later, Hans W. Becke and Carl F. Wheatley developed a similar device claiming non-latch-up. They patented the device in 1980, referring to it as "power MOSFET with an anode region" for which "no thyristor action occurs under any device operating conditions".[17][18]
A. Nakagawa et al. invented the device design concept of non-latch-up IGBTs in 1984.[19][20] The invention is characterized by the device design setting the device saturation current below the latch-up current, which triggers the parasitic thyristor. This invention realized complete suppression of the parasitic thyristor action, for the first time, because the maximal collector current was limited by the saturation current and never exceeded the latch-up current.
In the early development stage of IGBT, all the researchers tried to increase the latch-up current itself in order to suppress the latch-up of the parasitic thyristor. However, all these efforts failed because IGBT could conduct enormously large current. Successful suppression of the latch-up was made possible by limiting the maximal collector current, which IGBT could conduct, below the latch-up current by controlling/reducing the saturation current of the inherent MOSFET. This was the concept of non-latch-up IGBT. "Becke’s device" was made possible by the non-latch-up IGBT.
The IGBT is characterized by its ability to simultaneously handle a high voltage and a large current. The product of the voltage and the current density that the IGBT can handle reached more than 5×105 W/cm2,[21][22] which far exceeded the value, 2×105 W/cm2, of existing power devices such as bipolar transistors and power MOSFETs. This is a consequence of the large safe operating area of the IGBT. The IGBT is the most rugged and the strongest power device yet developed, affording ease of use and so displacing bipolar transistors and even gate turn-off thyristors (GTOs). This excellent feature of the IGBT had suddenly emerged when the non-latch-up IGBT was established in 1984 by solving the problem of so-called "latch-up", which is the main cause of device destruction or device failure. Before that, the developed devices were very weak and were easily destroyed by "latch-up".
Practical devices capable of operating over an extended current range were first reported by B. Jayant Baliga et al. in 1982.[23] The first experimental demonstration of a practical discrete vertical IGBT device was reported by Baliga at the IEEE International Electron Devices Meeting (IEDM) that year.[24][23] General Electric commercialized Baliga's IGBT device the same year.[25] Baliga was inducted into the National Inventors Hall of Fame for the invention of the IGBT.[26]
A similar paper was also submitted by J. P. Russel et al. to IEEE Electron Device Letter in 1982.[27] The applications for the device were initially regarded by the power electronics community to be severely restricted by its slow switching speed and latch-up of the parasitic thyristor structure inherent within the device. However, it was demonstrated by Baliga and also by A. M. Goodman et al. in 1983 that the switching speed could be adjusted over a broad range by using electron irradiation.[28][29] This was followed by demonstration of operation of the device at elevated temperatures by Baliga in 1985.[30] Successful efforts to suppress the latch-up of the parasitic thyristor and the scaling of the voltage rating of the devices at GE allowed the introduction of commercial devices in 1983,[31] which could be used for a wide variety of applications. The electrical characteristics of GE's device, IGT D94FQ/FR4, were reported in detail by Marvin W. Smith in the proceedings of PCI April 1984.[32] Smith showed in Fig. 12 of the proceedings that turn-off above 10 amperes for gate resistance of 5 kΩ and above 5 amperes for gate resistance of 1 kΩ was limited by switching safe operating area although IGT D94FQ/FR4 was able to conduct 40 amperes of collector current. Smith also stated that the switching safe operating area was limited by the latch-up of the parasitic thyristor.
Complete suppression of the parasitic thyristor action and the resultant non-latch-up IGBT operation for the entire device operation range was achieved by A. Nakagawa et al. in 1984.[19] The non-latch-up design concept was filed for US patents.[33] To test the lack of latch-up, the prototype 1200 V IGBTs were directly connected without any loads across a 600 V constant-voltage source and were switched on for 25 microseconds. The entire 600 V was dropped across the device, and a large short-circuit current flowed. The devices successfully withstood this severe condition. This was the first demonstration of so-called "short-circuit-withstanding-capability" in IGBTs. Non-latch-up IGBT operation was ensured, for the first time, for the entire device operation range.[22] In this sense, the non-latch-up IGBT proposed by Hans W. Becke and Carl F. Wheatley was realized by A. Nakagawa et al. in 1984. Products of non-latch-up IGBTs were first commercialized by Toshiba in 1985. This was the real birth of the present IGBT.
Once the non-latch-up capability was achieved in IGBTs, it was found that IGBTs exhibited very rugged and a very large safe operating area. It was demonstrated that the product of the operating current density and the collector voltage exceeded the theoretical limit of bipolar transistors, 2×105 W/cm2 and reached 5×105 W/cm2.[21][22]
The insulating material is typically made of solid polymers, which have issues with degradation. There are developments that use an ion gel to improve manufacturing and reduce the voltage required.[34]
The first-generation IGBTs of the 1980s and early 1990s were prone to failure through effects such as latchup (in which the device will not turn off as long as current is flowing) and secondary breakdown (in which a localized hotspot in the device goes into thermal runaway and burns the device out at high currents). Second-generation devices were much improved. The current third-generation IGBTs are even better, with speed rivaling power MOSFETs and excellent ruggedness and tolerance of overloads.[21] Extremely high pulse ratings of second- and third-generation devices also make them useful for generating large power pulses in areas including particle and plasma physics, where they are starting to supersede older devices such as thyratrons and triggered spark gaps. High pulse ratings and low prices on the surplus market also make them attractive to the high-voltage hobbyists for controlling large amounts of power to drive devices such as solid-state Tesla coils and coilguns.
As of 2010[update], the IGBT is the second most widely used power transistor, after the power MOSFET. The IGBT accounts for 27% of the power transistor market, second only to the power MOSFET (53%), and ahead of the RF amplifier (11%) and bipolar junction transistor (9%).[35] The IGBT is widely used in consumer electronics, industrial technology, the energy sector, aerospace electronic devices, and transportation.
The IGBT combines the simple gate-drive characteristics of power MOSFETs with the high-current and low-saturation-voltage capability of bipolar transistors. The IGBT combines an isolated-gate FET for the control input and a bipolar power transistor as a switch in a single device. The IGBT is used in medium- to high-power applications like switched-mode power supplies, traction motor control and induction heating. Large IGBT modules typically consist of many devices in parallel and can have very high current-handling capabilities in the order of hundreds of amperes with blocking voltages of 6500 V. These IGBTs can control loads of hundreds of kilowatts.
An IGBT features a significantly lower forward voltage drop compared to a conventional MOSFET in higher blocking voltage rated devices, although MOSFETS exhibit much lower forward voltage at lower current densities due to the absence of a diode Vf in the IGBT's output BJT. As the blocking voltage rating of both MOSFET and IGBT devices increases, the depth of the n- drift region must increase and the doping must decrease, resulting in roughly square relationship decrease in forward conduction versus blocking voltage capability of the device. By injecting minority carriers (holes) from the collector p+ region into the n- drift region during forward conduction, the resistance of the n- drift region is considerably reduced. However, this resultant reduction in on-state forward voltage comes with several penalties:
In general, high voltage, high current and lower frequencies favor the IGBT while low voltage, medium current and high switching frequencies are the domain of the MOSFET.
Circuits with IGBTs can be developed and modeled with various circuit simulating computer programs such as SPICE, Saber, and other programs. To simulate an IGBT circuit, the device (and other devices in the circuit) must have a model which predicts or simulates the device's response to various voltages and currents on their electrical terminals. For more precise simulations the effect of temperature on various parts of the IGBT may be included with the simulation. Two common methods of modeling are available: device physics-based model, equivalent circuits or macromodels. SPICE simulates IGBTs using a macromodel that combines an ensemble of components like FETs and BJTs in a Darlington configuration.[citation needed] An alternative physics-based model is the Hefner model, introduced by Allen Hefner of the National Institute of Standards and Technology. Hefner's model is fairly complex but has shown good results. Hefner's model is described in a 1988 paper and was later extended to a thermo-electrical model which include the IGBT's response to internal heating. This model has been added to a version of the Saber simulation software.[36]
The failure mechanisms of IGBTs includes overstress (O) and wearout (wo) separately.
The wearout failures mainly include bias temperature instability (BTI), hot carrier injection (HCI), time-dependent dielectric breakdown (TDDB), electromigration (ECM), solder fatigue, material reconstruction, corrosion. The overstress failures mainly include electrostatic discharge (ESD), latch-up, avalanche, secondary breakdown, wire-bond liftoff and burnout.[37]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.