In mathematics, Hooley's delta function (), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in for all , where is the Euler's number. The first few terms of this sequence are
Named after | Christopher Hooley |
---|---|
Publication year | 1979 |
Author of publication | Paul Erdős |
First terms | 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1 |
OEIS index | A226898 |
History
The sequence was first introduced by Paul Erdős in 1974,[1] then studied by Christopher Hooley in 1979.[2]
In 2023, Dimitris Koukoulopoulos and Terence Tao proved that the sum of the first terms, , for .[3] In particular, the average order of to is for any .[4]
Later in 2023 Kevin Ford, Koukoulopoulos, and Tao proved the lower bound , where , fixed , and .[5]
Usage
This function measures the tendency of divisors of a number to cluster.
The growth of this sequence is limited by where is the number of divisors of .[6]
See also
References
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.