In mathematics, Hooley's delta function (), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in for all , where is the Euler's number. The first few terms of this sequence are

(sequence A226898 in the OEIS).
Quick Facts Named after, Publication year ...
Hooley's delta function
Named afterChristopher Hooley
Publication year1979
Author of publicationPaul Erdős
First terms1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1
OEIS indexA226898
Close

History

Summarize
Perspective

The sequence was first introduced by Paul Erdős in 1974,[1] then studied by Christopher Hooley in 1979.[2]

In 2023, Dimitris Koukoulopoulos and Terence Tao proved that the sum of the first terms, , for .[3] In particular, the average order of to is for any .[4]

Later in 2023 Kevin Ford, Koukoulopoulos, and Tao proved the lower bound , where , fixed , and .[5]

Usage

This function measures the tendency of divisors of a number to cluster.

The growth of this sequence is limited by where is the number of divisors of .[6]

See also

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.