Loading AI tools
Group of gauge symmetries in Yang–Mills theory From Wikipedia, the free encyclopedia
A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle with a structure Lie group , a gauge group is defined to be a group of its vertical automorphisms, that is, its group of bundle automorphisms. This group is isomorphic to the group of global sections of the associated group bundle whose typical fiber is a group which acts on itself by the adjoint representation. The unit element of is a constant unit-valued section of .
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2024) |
At the same time, gauge gravitation theory exemplifies field theory on a principal frame bundle whose gauge symmetries are general covariant transformations which are not elements of a gauge group.
In the physical literature on gauge theory, a structure group of a principal bundle often is called the gauge group.
In quantum gauge theory, one considers a normal subgroup of a gauge group which is the stabilizer
of some point of a group bundle . It is called the pointed gauge group. This group acts freely on a space of principal connections. Obviously, . One also introduces the effective gauge group where is the center of a gauge group . This group acts freely on a space of irreducible principal connections.
If a structure group is a complex semisimple matrix group, the Sobolev completion of a gauge group can be introduced. It is a Lie group. A key point is that the action of on a Sobolev completion of a space of principal connections is smooth, and that an orbit space is a Hilbert space. It is a configuration space of quantum gauge theory.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.