In group theory, a branch of mathematics, Frattini's argument is an important lemma in the structure theory of finite groups. It is named after Giovanni Frattini, who used it in a paper from 1885 when defining the Frattini subgroup of a group. The argument was taken by Frattini, as he himself admits, from a paper of Alfredo Capelli dated 1884.[1]

Frattini's argument

Statement

If is a finite group with normal subgroup , and if is a Sylow p-subgroup of , then

where denotes the normalizer of in , and means the product of group subsets.

Proof

The group is a Sylow -subgroup of , so every Sylow -subgroup of is an -conjugate of , that is, it is of the form for some (see Sylow theorems). Let be any element of . Since is normal in , the subgroup is contained in . This means that is a Sylow -subgroup of . Then, by the above, it must be -conjugate to : that is, for some

and so

Thus

and therefore . But was arbitrary, and so

Applications

  • Frattini's argument can be used as part of a proof that any finite nilpotent group is a direct product of its Sylow subgroups.
  • By applying Frattini's argument to , it can be shown that whenever is a finite group and is a Sylow -subgroup of .
  • More generally, if a subgroup contains for some Sylow -subgroup of , then is self-normalizing, i.e. .

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.