Loading AI tools
Surgery to treat common vision disorders From Wikipedia, the free encyclopedia
Refractive surgery is an optional eye surgery used to improve the refractive state of the eye and decrease or eliminate dependency on glasses or contact lenses. This can include various methods of surgical remodeling of the cornea (keratomileusis), lens implantation or lens replacement. The most common methods today use excimer lasers to reshape the curvature of the cornea. Refractive eye surgeries are used to treat common vision disorders such as myopia, hyperopia, presbyopia and astigmatism.
Refractive surgery | |
---|---|
Specialty | ophthalmology, optometry |
Types | myopia, hyperopia, astigmatism, presbyopia |
This section needs additional citations for verification. (October 2009) |
The first theoretical work on the potential of refractive surgery was published in 1885 by Hjalmar August Schiøtz, an ophthalmologist from Norway.[1] In 1930, the Japanese ophthalmologist Tsutomu Sato made the first attempts at performing this kind of surgery, hoping to correct the vision of military pilots. His approach was to make radial cuts in the cornea, correcting effects by up to 6 diopters. The procedure unfortunately produced a high rate of corneal degeneration, however, and was soon rejected by the medical community.
The first proficient refractive surgery technique was developed in the Barraquer ophthalmologic clinic (Bogotá, Colombia), in 1963, by Jose Barraquer. His technique, called keratomileusis, meaning corneal reshaping (from Greek κέρας (kéras: horn) and σμίλευσις (smileusis: carving)), enabled the correction, not only of myopia, but also of hyperopia. It involves removing a corneal layer, freezing it so that it could be manually sculpted into the required shape, and finally reimplanting the reshaped layer into the eye. In 1980, Swinger performed first keratomileusis surgery in US.[2] In 1985, Krumeich and Swinger introduced non-freeze keratomileusis technique,[2] it remained a relatively imprecise technique.
In 1974 a refractive procedure called Radial Keratotomy (RK) was developed in the USSR by Svyatoslav Fyodorov and later introduced to the United States. RK involves making a number of cuts in the cornea to change its shape and correct refractive errors. The incisions are made with a diamond knife. Following the introduction of RK, doctors routinely corrected nearsightedness, farsightedness, and astigmatism using various applications of incisions on the cornea.
Meanwhile, experiments in 1970 using a xenon dimer and in 1975 using noble gas halides resulted in the invention of a type of laser called an excimer laser. While excimer lasers were initially used for industrial purposes, in 1980, Rangaswamy Srinivasan, a scientist of IBM who was using an excimer laser to make microscopic circuits in microchips for informatics equipment, discovered that the excimer could also be used to cut organic tissues with high accuracy without significant thermal damage. The discovery of an effective biological cutting laser, along with the development of computers to control it, enabled the development of new refractive surgery techniques.
In 1983, Stephen Trokel, a scientist at Columbia University, in collaboration with Theo Seiler and Srinivasan, performed the first Photorefractive Keratectomy (PRK), or keratomileusis in situ (without separation of corneal layer) in Germany.[3] The first patent for this approach, which later became known as LASIK surgery, was granted by the US Patent Office to Gholam Ali. Peyman, MD on June 20, 1989.[4] It involves cutting a flap in the cornea and pulling it back to expose the corneal bed, then using an excimer laser to ablate the exposed surface to the desired shape, and then replacing the flap. The name LASIK was coined in 1991 by University of Crete and the Vardinoyannion Eye.[5]
The patents related to so-called broad-beam LASIK and PRK technologies were granted to US companies including Visx and Summit during 1990–1995 based on the fundamental US patent issued to IBM (1983) which claimed the use of UV laser for the ablation of organic tissues.
In 1991, J.T. Lin, Ph.D. (a Chinese Physicist) was granted a US patent[6] for a new technology using a flying-spot for customized LASIK currently used worldwide. The first US patent using an eye-tracking device to prevent decentration in LASIK procedures was granted to another Chinese Physicist, Dr. S. Lai in 1993.
Excimer laser ablation is done under a partial-thickness lamellar corneal flap.
The excimer laser is used to ablate the most anterior portion of the corneal stroma. These procedures do not require a partial thickness cut into the stroma. Surface ablation methods differ only in the way the epithelial layer is handled.
Clear lens extraction or Refractive lens exchange is effectively the same procedure as cataract surgery used to replace a natural lens with high refractive error when other methods are not effective.[13] It can be done in patients with severe refractive error and/or presbyopia who wish to avoid spectacles.[14][15] In addition to the common complications of cataract surgery, clear lens extraction may also cause premature posterior vitreous detachment and retinal detachment.[14] In some people with very high myopia, the eye may be left aphakic, without intraocular lens implantation.[16]
A related procedure is the implantation of phakic intraocular lenses in series with the natural lens to correct vision in cases of high refractive errors.[17]
Using mid-IR and UV lasers for the treatment of presbyopia by scleral tissue ablation was first proposed and patented by J.T. Lin, Ph.D. in US patents #6,258,082 (in 2001) and #6,824,540 (in 2004).
Research conducted by the Magill Research Center for Vision Correction, Medical University of South Carolina, showed that the overall patient satisfaction rate after primary LASIK surgery was 95.4%. They further differentiated between myopic LASIK (95.3%) and hyperopic LASIK (96.3%). They concluded that the vast majority (95.4%) of patients were satisfied with their outcome after LASIK surgery.[20]
Ophthalmologists use various approaches to analyze the results of refractive surgery, and alter their techniques to provide better results in the future.[21][22][23][24][25][26][27][28][29] Some of these approaches are programmed into the devices ophthalmologists use to measure the refraction of the eye and the shape of the cornea, such as corneal topography.[30]
While refractive surgery is becoming more affordable and safe, it may not be recommended for everybody. People with certain eye diseases involving the cornea or retina, pregnant women, and patients who have medical conditions such as glaucoma, diabetes, uncontrolled vascular disease, or autoimmune disease are not good candidates for refractive surgery. Keratoconus, a progressive thinning of the cornea, is a common corneal disorder. Keratoconus occurring after refractive surgery is called Corneal Ectasia. It is believed that additional thinning of the cornea via refractive surgery may contribute to advancement of the disease[31] that may lead to the need for a corneal transplant. Therefore, keratoconus is a contraindication to refractive surgery. Corneal topography and pachymetry are used to screen for abnormal corneas. Furthermore, some people's eye shape may not permit effective refractive surgery without removing excessive amounts of corneal tissue. Those considering laser eye surgery should have a full eye examination.
Although the risk of complications is decreasing compared to the early days of refractive surgery,[32] there is still a small chance for serious problems. These include vision problems such as ghosting, halos, starbursts, double-vision, and dry-eye syndrome.[33] With procedures that create a permanent flap in the cornea (such as LASIK), there is also the possibility of accidental traumatic flap displacement years after the surgery,[34] with potentially disastrous results if not given prompt medical attention.[35]
For patients with strabismus, risks of complications such as diplopia and/or increased strabismus angle need to be evaluated carefully. In case both refractive surgery and strabismus surgery are to be performed, it is recommended that the refractive surgery be done first.[36]
Pediatric refractive surgery involves other risks than refractive surgery on adults, yet it may be indicated especially for children whose cognitive or visual development is failing due to refractive error,[37] in particular in cases of bilateral high refractive error,[38] anisometropia,[39] anisometric amblyopia[38][40] or accommodative esotropia.[39][41]
Interventions on young children may require general anaesthesia in order to avoid risks due to involuntary movement, and children have a higher risk of rubbing or manipulating their eyes post-surgically. Changes to refractive error occurring during normal age development need to be accounted for, and children have a higher risk of developing postoperative corneal haze.[42][43] This risk is particularly relevant with relation to myopic children.[44]
One study evaluated the outcome of LASEK interventions on 53 children aged 10 months to 16 years who had anisometropic amblyopia. The choice of LASEK was made as it was felt it would give fewer complications than LASIK and less post-operative pain than PRK. In the intervention, which was performed under general anaesthesia, the refractive error in the weaker eye was corrected to balance the refractive error of the other eye. Strabismus surgery was performed later if required. After one year, over 60% had improved in best corrected visual acuity (BCVA) in the weaker eye. Notably, over 80% showed stereopsis post-operatively whereas less than 40% had showed stereopsis before.[45]
In addition to corneal refractive procedures (LASIK, PRK and LASEK), intraocular refractive procedures (phakic intraocular lenses, refractive lens exchange and clear lens extraction) are also performed on children.[46]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.